
Satellite Communications Toolbox
Reference

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Satellite Communications Toolbox Reference
© COPYRIGHT 2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2021 Online only New for Version 1.0 (Release 2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Apps
1

Functions
2

Objects
3

System Objects
4

iii

Contents

Apps

1

Satellite Link Budget Analyzer
Analyze link budgets for satellite communications

Description
The Satellite Link Budget Analyzer app enables you to analyze link budgets for satellite
communications.

Using the app, you can:

• Analyze link budgets by specifying inputs properties related to

• Location, transmitter, and receiver characteristics for satellites and ground stations
• Atmospheric conditions for links

• Design a satellite communications link to meet a minimum link margin requirement
• Have insight into intermediate link budget computations
• Calculate, compare, and visualize results across a sweep of multiple parametrized design

constraints

For more information, see “Get Started with Satellite Link Budget Analyzer App”.

1 Apps

1-2

Open the Satellite Link Budget Analyzer App
MATLAB® Toolstrip: On the Apps tab, under Signal Processing and Communications, click the

app icon.

MATLAB Command Prompt: Enter satelliteLinkBudgetAnalyzer.

Examples

Show Default Satellite Link Budget App Configuration

This example shows the default configuration that appears when you open the Satellite Link
Budget Analyzer app. The displayed results and plots analyze the default satellite communications
link.

The upper left area of the app window shows the Link Canvas tab on top with this default
configuration:

• Link L1 is an uplink connecting ground station G1 to satellite S1
• Link L3 is a crosslink connecting satellite S3 to satellite S4
• Link L2 is a downlink connecting satellite S2 to ground station G2

 Satellite Link Budget Analyzer

1-3

The lower left area of the app window shows the Ground Station, Link, and Satellite tabs. In these
tabs you can adjust property settings for each entity in the configured links. To view or adjust the
properties settings of an entity, bring it into focus by selecting it in the Link Canvas tab.

The center area of the app window shows the computed link budget results in the Link Budget tab.

The right area of the app window shows these plots:

• Free-space path loss for links L1, L2, and L3 in the upper-right area.
• Link margins for links L1, L2, and L3 in separate tabbed plots in the lower-right area.

Analyze Satellite Availability in P.618 Propagation Model

Configure the Satellite Link Budget Analyzer app to analyze satellite communications link
availability through the propagation loss model defined in Recommendation ITU-R P.618-13. Load the
AvailabilityAnalysis-P618.mat saved session to configure the app for the P.618 availability
analysis. This example uses the model and API provided by the P.618 Recommendation. For details on
the P.618 propagation loss model, see “Earth-Space Propagation Losses”. Before configuring the app
for the P-618 availability analysis, download and unpack the ITURDigitalMaps.tar.gz file to a directory
that is on the MATLAB path.

Configure Satellite Link Budget Analyzer App

Open the Satellite Link Budget Analyzer app. These figures show the default configuration on the
Budget Analyzer and Customize Input/Output tabs.

1 Apps

1-4

https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz

Click Open on the Budget Analyzer tab, and then open the AvailabilityAnalysis-P618.mat
saved session file from the working directory of this example.

Opening the saved AvailabilityAnalysis-P618.mat session updates the app configuration by
adding new properties, adjusting formulas for results, and simplifying the workflow by removing links
and computations not relevant to this analysis scenario.

After the saved session loads, the Budget Analyzer tab shows the configuration updates. On the
Budget Analyzer tab,

• Analyze shows Auto Analyze not selected.
• Select Links shows that only link L1 is selected. The analysis in this example requires only the

uplink path (link L1).Computation of results for links L2 and L3 are turned off.

 Satellite Link Budget Analyzer

1-5

After the saved session loads, the Customize Input/Output tab shows the configuration updates.

• A property is added to the Link Properties section of the Properties tab to specify the desired
availability percentage (Availability). The value is set to 99.9%.

• Results are added on the Results tab to compute the total atmospheric attenuation (Total atm
att) and total propagation losses (Total prop losses) per the P.618 propagation model. To
compute the total atmospheric attenuation, the app runs the computeTotalAttenuation.m function
using properties configured in the app. In the formula for the Total atm att property on the
Results tab you can see the input parameters as identified by property tag names (PLC1, PG1,
PG2, PG3, PL1, N2, PT5, and PL5).

• The formula for the received isotropic power (Tag: N6) on the Results tab is changed to use NC2
instead of N5.

This figure shows updates to the configuration in the Properties and Results tabs.

1 Apps

1-6

Analyze Link Availability

Before analyzing the P.618 scenario, you must download the digital maps file. If you have not
downloaded and unpacked the digital maps file, this dialog box will appear. Follow the instructions in
the dialog.

After you have downloaded and uncompressed the digital maps file, click Analyze to compute the link
budget for the configured P.618 scenario.

The app runs the P.618 scenario to analyze the 99.9% annual availability and then updates the link
budget and plotted results. The 99.9% annual availability is satisfied with approximately 4.8 dB of
margin for the configured satellite communications link.

 Satellite Link Budget Analyzer

1-7

Parameters
BUDGET ANALYZER — Link budget configuration
tab

This figure shows the BUDGET ANALYZER tab with the factory default configuration.

1 Apps

1-8

Use the Ground Station, Link, and Satellite tabs to adjust property settings for the link budget
entities shown in the Link Canvas tab.

Ground Station — Ground station location, transmitter, and receiver settings
tab

Select the Ground Station tab to set the location, transmitter, and receiver settings for the ground
station highlighted in the Link Canvas tab. For information about customizing satellite, ground
station, transmitter, receiver, and link properties, and the link budget result computations, see
CUSTOMIZE INPUT/OUTPUT.

Satellite — Satellite location, transmitter, and receiver settings
tab

Select the Satellite tab to set the location, transmitter, and receiver settings for the satellite
highlighted in the Link Canvas tab. For information about customizing satellite, ground station,
transmitter, receiver, and link properties, and the link budget result computations, see CUSTOMIZE
INPUT/OUTPUT.

Link — Link characteristics
tab

Select the Link tab to set link characteristics for the link highlighted in the Link Canvas tab. For
information about customizing satellite, ground station, transmitter, receiver, and link properties, and
the link budget result computations, see CUSTOMIZE INPUT/OUTPUT.

Customize Input/Output — Customize input properties and computations used for output
tab

 Satellite Link Budget Analyzer

1-9

To view or customize input properties and computations used for output, on the BUDGET
ANALYZER tab, click Customize Input/Output to switch to the CUSTOMIZE INPUT/OUTPUT
tab. In the CUSTOMIZE INPUT/OUTPUT tab, you can

• Change settings of the satellite, ground station, transmitter, receiver, and link properties from the
factory default inputs

• Add and delete satellite, ground station, transmitter, receiver, and link input properties
• Add, delete, and modify formulas used to compute link budget output results

CUSTOMIZE INPUT/OUTPUT — Customize link budget computations
tab

This figure show the CUSTOMIZE INPUT/OUTPUT tab with the factory default configuration.

In the CUSTOMIZE INPUT/OUTPUT tab, you can

• Use the Properties tab to change settings of the satellite, ground station, transmitter, receiver,
and link properties from the factory default inputs. You can also add and delete satellite, ground
station, transmitter, receiver, and link input properties. On the Properties tab you can use the
Restore to factory button to load the factory default property configuration in the current app
session.

• Use the Results tab to add, delete, and modify formulas used to compute link budget output
results. On the Results tab you can use the Restore to factory button to load the factory default
results configuration in the current app session.

1 Apps

1-10

Programmatic Use
satelliteLinkBudgetAnalyzer opens the Satellite Link Budget Analyzer app.

See Also
Functions
fspl

Objects
satelliteScenario

Topics
“Get Started with Satellite Link Budget Analyzer App”

Introduced in R2021a

 Satellite Link Budget Analyzer

1-11

Functions

2

ccsdsRSEncode
CCSDS-compliant Reed-Solomon encoder

Syntax
code = ccsdsRSEncode(msg,k)
code = ccsdsRSEncode(msg,k,i)
code = ccsdsRSEncode(msg,k,i,s)

Description
code = ccsdsRSEncode(msg,k) encodes the message in msg by using a (255, k) Reed-Solomon
(RS) encoder, as defined in Consultative Committee for Space Data Systems (CCSDS) 131.0-B-3
Section 4 [1]. k is the message length. code is in dual basis form, as the function assumes that the
input to the CCSDS RS encoder is in dual basis form. For more details on dual basis representation,
see CCSDS 131.0-B-3 Section 4.4.2 [1].

For a description of CCSDS RS code construction, see “CCSDS RS Code Construction” on page 2-5.

code = ccsdsRSEncode(msg,k,i) specifies the interleaving depth, i. msg consists of i RS
message symbols of length k.

code = ccsdsRSEncode(msg,k,i,s) encodes the shortened input message of length s with
interleaving depth i.

Examples

Encode Message Using Full-Length CCSDS RS Encoder

Encode a message using a Consultative Committee for Space Data Systems (CCSDS) Reed-Solomon
(RS) encoder.

Specify the message length, k, and the interleaving depth, i.

k = 239;
i = 3;

Generate a column vector of random message symbols. The length of the message is product of
message length, k, and interleaving depth, i.

msg = randi([0 255],k*i,1);
size(msg)

ans = 1×2

 717 1

Encode the message by using CCSDS RS encoder.

code = ccsdsRSEncode(msg,k,i);

2 Functions

2-2

Verify that the length of the encoded codeword is 255 times the value of the interleaving depth.

size(code)

ans = 1×2

 765 1

Encode Shortened Message Using CCSDS RS Encoder

Encode a message using a Consultative Committee for Space Data Systems (CCSDS) Reed-Solomon
(RS) encoder with message shortening.

Specify the message length, k, interleaving depth, i, and the shortened message length, s.

k = 223;
i = 2;
s = 146;

Generate a column vector of random message bits. The length for the shortened message bits is eight
times the product of shortened message length, s, and the interleaving depth, i.

msg = logical(randi([0 1],s*i*8,1));

Encode the shortened message by using a CCSDS RS encoder.

code = ccsdsRSEncode(msg,k,i,s);

Verify that the length of the encoded codeword is equal to (8*i*(255 – k + s).

size(code)

ans = 1×2

 2848 1

Input Arguments
msg — Input message
column vector of logical bits | column vector of integers in the range [0, 255]

Input message, specified as a column vector of logical bits or a column vector of integers in the range
[0, 255]. The size of the column vector depends on the data type of the input message.

Input Message
Type

Size of msg
Data Type of msg Is
logical

Data Type of msg Is uint8 or double

Full-length input
message

8*k k

 ccsdsRSEncode

2-3

Input Message
Type

Size of msg
Data Type of msg Is
logical

Data Type of msg Is uint8 or double

Interleaved input
message

8*k*i k*i

Shortened input
message

8*s*i s*i

Data Types: double | uint8 | logical

k — Message length
223 | 239

Message length, specified as 223 or 239.
Data Types: double

i — Interleaving depth
1 (default) | 2 | 3 | 4 | 5 | 8

Interleaving depth, specified as 1, 2, 3, 4, 5, or 8. The default value, 1, corresponds to no
interleaving.

msg consists of i RS message symbols of length k.
Data Types: double

s — Shortened message length
k (default) | integer in the range [1, k]

Shortened message length, specified as an integer in the range [1, k].
Data Types: double

Output Arguments
code — CCSDS RS encoded message
column vector

CCSDS RS encoded message, returned as a column vector. The data type of code is same as that of
the input message, msg. The size of the column vector depends on the data type of the input message.

Input Message
Type

Size of code
Data Type of msg Is
logical

Data Type of msg Is uint8 or double

Full length input
message

8*255 255

Interleaved input
message

8*255*i 255*i

Shortened input
message

8*i*(255 – k + s) i*(255 – k + s)

2 Functions

2-4

More About
CCSDS RS Code Construction

CCSDS RS codes are powerful burst error-correcting codes used as forward error-correcting (FEC)
codes.

The CCSDS RS encoder accepts full-length or shortened messages.

Construction of Full-Length Message CCSDS RS Codes

For full-length input messages the input column vector length is a product of the interleaving depth
(i) and the message length (k).

Encoding in CCSDS RS codes is done row-wise. The encoding results in an i-by-n vector that includes
parity bits added to the end of each row. n is the codeword length, which is fixed to 255 symbols
according to CCSDS 131.0-B-3 Section 4 [1].

Construction of Shortened Message CCSDS RS Codes

For shortened input messages, the input column vector length is a product of the interleaving depth
(i) and the shortened message length (s). The shortened message vector prepends padding the
beginning of the message vector with zeros. The resulting vector is an i-by-k vector.

Encoding in CCSDS RS codes is done row-wise. The encoding results in an i-by-n vector that includes
parity bits added to the end of each row.

References
[1] TM Synchronization and Channel Coding. Recommendation for Space Data System Standards.

CCSDS 131.0-B-3. Blue Book. Issue 3. Washington, D.C.: CCSDS, September 2017.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ccsdsRSDecode

Objects
ccsdsTMWaveformGenerator | comm.RSEncoder

Introduced in R2021a

 ccsdsRSEncode

2-5

ccsdsRSDecode
CCSDS-complaint Reed-Solomon decoder

Syntax
[decoded,cnumerr,ccode] = ccsdsRSDecode(code,k)
[decoded,cnumerr,ccode] = ccsdsRSDecode(code,k,i)
[decoded,cnumerr,ccode] = ccsdsRSDecode(code,k,i,s)

Description
[decoded,cnumerr,ccode] = ccsdsRSDecode(code,k) decode the received signal in code by
using a (255, k) Reed-Solomon (RS) decoder with the generator polynomial, as defined in the
Consultative Committee for Space Data Systems (CCSDS) 131.0-B-3 Section 4 [1]. k is the number of
symbols in the decoded message. The function returns the decoded message code, decoded, the
number of corrected errors, cnumerr, and the corrected version of code, ccode.

For a description of CCSDS RS code decoding, see “CCSDS RS Code Decoding” on page 2-9.

[decoded,cnumerr,ccode] = ccsdsRSDecode(code,k,i) specifies the interleaving depth, i.
code consists of i RS codewords of length 255 bytes.

[decoded,cnumerr,ccode] = ccsdsRSDecode(code,k,i,s) specifies the shortened message
length, s.

Examples

Encode and Decode Full-length CCSDS RS Encoded Message

Generate a full-length encoded Reed-Solomon (RS) codeword, introduce random errors, and decode
the result using a Consultative Committee for Space Data Systems (CCSDS) RS decoder.

Generate a random message of length k.

k = 223;
msg = randi([0 255],k,1);

Encode the message by using a CCSDS RS encoder.

code = ccsdsRSEncode(msg,k);

Generate 15 random error symbols and 15 unique random locations to insert these errors.

err = randi([1 255],15,1);
errLoc = randperm(255,15);
errVec = zeros(255,1);
errVec(errLoc) = err;

Introduce error symbols in the encoded message.

rxBytes = bitxor(code,errVec);

2 Functions

2-6

Decode the encoded symbols introduced with errors by using CCSDS RS decoder.

[decoded,v,ccode] = ccsdsRSDecode(rxBytes, k);

Display the number of corrected errors.

disp(v)

 15

Decode CCSDS RS Codeword with Burst Errors

Generate an full-length encoded Reed-Solomon (RS) codeword, introduce burst of erros, and decode
the result using a Consultative Committee for Space Data Systems (CCSDS) RS decoder.

Specify the message length k and interleaving depth, i.

k = 239;
i = 5;

Generate a column vector of random message bits. Encode the shortened message by using a CCSDS
RS encoder.

msg = randi([0 255],k*i,1);
code = ccsdsRSEncode(msg,k,i);

Generate 30 random error symbols.

err = randi([1 255],30,1);
errVec = zeros(255*i,1);

Introduce burst errors from location 52 to 81.

errVec(52:81) = err;
rxBytes = bitxor(code,errVec);

Decode the encoded symbols introduced with burst errors by using a CCSDS RS decoder.

[decoded,v,ccode] = ccsdsRSDecode(rxBytes,k,i);

Display the number of corrected errors.

disp(v)

 30

Input Arguments
code — Encoded message
column vector of integers in the range [0, 255]

Encoded message, specified as a column vector of integers in the range [0, 255].

The elements and the size of the column vector depends on the data type of the input message.

 ccsdsRSDecode

2-7

• For a logical data type, each element in the vector is either 0 or 1.
• For a uint8 or double data type, each element is an integer symbol in GF(2m), in the range [0,

255]. m is the number of bits in each symbol.

Input Message
Type

Size of code
Data Type of code Is
logical

Data Type of code Is uint8 or double

Full length input
message

8*255 255

Interleaved input
message

8*255*i 255*i

Shortened input
message

8*i*(255 – k + s) i*(255 – k + s)

Data Types: double | uint8 | logical

k — Number of symbols in decoded message
223 | 239

Number of symbols in the decoded message, specified as 223 or 239.
Data Types: double

i — Interleaving depth
1 (default) | 2 | 3 | 4 | 5 | 8

Interleaving depth, specified as 1, 2, 3, 4, 5, or 8. The default value, 1, corresponds to no
interleaving.

code consists of i RS codewords of length 255 bytes.
Data Types: double

s — Shortened message length
k (default) | integer in the range [1, k]

Shortened message length, specified as an integer in the range [1, k].
Data Types: double

Output Arguments
decoded — Decoded message
column vector

Decoded message, returned as a column vector. Each element represents decoding the corresponding
element in input code. The data type of decoded is the same as that of code.

The size of the column vector depends on the data type of code.

2 Functions

2-8

Input Message
Type

Size of decoded
Data Type of code Is
logical

Data Type of code Is uint8 or double

Full length input
message

8*k k

Interleaved input
message

8*k*i k*i

Shortened input
message

8*s*i s*i

When the value of output cnumerr is –1, decoded is equal to the first k elements of code.

cnumerr — Number of corrected errors
integer in the range [-1, (n – k) ∕ 2]

Number of corrected errors, returned as an integer in the range [-1, (n – k) ∕ 2], where n is the
codeword length. The value of n is set to 255 according to CCSDS 131.0-B-3 Section 4 [1].

A value of –1 in cnumerr indicates the failure of the decoder to correct the errors.

ccode — Corrected version of code
column vector

Corrected version of code, returned as a column vector. The length of ccode is same as the length of
code. The data type of ccode is the same as that of code.

When the value of output cnumerr is –1, ccode is equal to code.

More About
CCSDS RS Code Decoding

CCSDS RS codes are powerful burst error-correcting codes. These are most commonly used as
forward error-correcting (FEC) codes, as they detects and correct errors on the symbol level.
Decoding Full-Length Message CCSDS RS Codes

Like encoding, decoding of CCSDS RS codes is also done row-wise. The input vector length is a
product of interleaving depth (i) and codeword length (n). n is fixed to 255 symbols according to
CCSDS 131.0-B-3 Section 4 [1]. The input vector is composed of message and parity symbols.

Decoding Shortened Message CCSDS RS Codes

Like encoding, the decoding of CCSDS RS codes is also done row-wise. The input vector length is a
product of the interleaving depth (i) and the value calculated by n-k+s. The input vector is composed
of shortened message and parity symbols.

References
[1] TM Synchronization and Channel Coding. Recommendation for Space Data System Standards.

CCSDS 131.0-B-3. Blue Book. Issue 3. Washington, D.C.: CCSDS, September 2017.

 ccsdsRSDecode

2-9

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ccsdsRSEncode

Objects
ccsdsTMWaveformGenerator | comm.RSDecoder

Introduced in R2021a

2 Functions

2-10

dvbs2BitRecover
Recover bits for DVB-S2 PL frames

Syntax
[BITS,NUMFRAMESLOST] = dvbs2BitRecover(RXFRAME,NVAR)
[BITS,NUMFRAMESLOST,PKTCRCSTATUS] = dvbs2BitRecover(RXFRAME,NVAR)
[BITS,NUMFRAMESLOST] = dvbs2BitRecover(RXFRAME,NVAR,EARLYTERM)

Description
[BITS,NUMFRAMESLOST] = dvbs2BitRecover(RXFRAME,NVAR) recovers user packets (UPs) or a
continuous data stream, BITS, and the number of lost baseband frames, NUMFRAMESLOST. Input
RXFRAME is the received complex in-phase quadrature (IQ) symbols in the form of physical layer (PL)
frames of a Digital Video Broadcasting Satellite Second Generation (DVB-S2) transmission. Input
NVAR is the noise variance estimate, used to calculate soft bits.

[BITS,NUMFRAMESLOST,PKTCRCSTATUS] = dvbs2BitRecover(RXFRAME,NVAR) also returns the
UP cyclic redundancy check (CRC) status.

[BITS,NUMFRAMESLOST] = dvbs2BitRecover(RXFRAME,NVAR,EARLYTERM) uses low-density
parity-check (LDPC) decoding termination criterion, EARLYTERM, to recover data bits, BITS.

Examples

Recover Data Bits from Transport Stream DVB-S2 Transmission

Recover user packets (UPs) for multiple physical layer (PL) frames in a single transport stream
Digital Video Broadcasting Satellite Second Generation (DVB-S2) transmission.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip','file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of PL frames per stream. Create a DVB-S2 System object.

nFrames = 2;
s2WaveGen = dvbs2WaveformGenerator;

Create the bit vector of information bits, data, of concatenated TS UPs.

syncBits = [0 1 0 0 0 1 1 1]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496

 dvbs2BitRecover

2-11

numPkts = s2WaveGen.MinNumPackets*nFrames;
txRawPkts = randi([0 1],pktLen,numPkts);
txPkts = [repmat(syncBits,1,numPkts); txRawPkts];
data = txPkts(:);

Generate the DVB-S2 time-domain waveform using the input information bits. Flush the transmit
filter to handle the filter delay and recover the complete last frame.

txWaveform = [s2WaveGen(data); flushFilter(s2WaveGen)];

Add additive white Gaussian noise (AWGN) to the generated waveform.

sps = s2WaveGen.SamplesPerSymbol;
EsNodB = 1;
snrdB = EsNodB - 10*log10(sps);
rxIn = awgn(txWaveform,snrdB,'measured');

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(...
 'RolloffFactor',s2WaveGen.RolloffFactor, ...
 'InputSamplesPerSymbol',sps,...
 'DecimationFactor',sps);
s = coeffs(rxFilter);
rxFilter.Gain = sum(s.Numerator);

Apply matched filtering and remove the filter delay.

filtOut = rxFilter(rxIn);
rxFrame = filtOut(rxFilter.FilterSpanInSymbols+1:end);

Recover UPs. Display the number of frames lost and the UP cyclic redundancy check (CRC) status.

[bits,FramesLost,pktCRCStat] = dvbs2BitRecover(rxFrame,10^(-EsNodB/10));
disp(FramesLost)

 0

disp(pktCRCStat)

 {20×1 logical}

Recover Data Bits from Generic Stream DVB-S2 Transmission with Early Termination
Enabled

Recover user bits in a multi-input generic stream (GS) Digital Video Broadcasting Satellite Second
Generation (DVB-S2) transmission with variable modulation and coding scheme.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip','file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');

2 Functions

2-12

 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

nFrames = 1;

Create a DVB-S2 System object with variable coding and modulation configuration for a multi-input
GS. Specify the modulation scheme and forward error correction (FEC) rate (MODCOD) and the data
field length (DFL).

s2WaveGen = dvbs2WaveformGenerator;
s2WaveGen.StreamFormat = "GS";
s2WaveGen.NumInputStreams = 3;
s2WaveGen.MODCOD = [10 15 6]; % QPSK 8/9, 8PSK 5/6, and QPSK 2/3
s2WaveGen.DFL = [44500 51387 42960];

Create a bit vector of input information bits for each input stream.

data = cell(s2WaveGen.NumInputStreams,1);
for i = 1:s2WaveGen.NumInputStreams
 data{i} = randi([0 1],s2WaveGen.DFL(i)*nFrames,1);
end

Generate the DVB-S2 time-domain waveform with the input information bits. Flush the transmit filter
to handle the filter delay and recover the complete frame.

txWaveform = [s2WaveGen(data); flushFilter(s2WaveGen)];

Add additive white Gaussian noise (AWGN) to the generated waveform. Specify the samples per
symbol for the baseband filter.

sps = s2WaveGen.SamplesPerSymbol;
EsNodB = 10;
snrdB = EsNodB - 10*log10(sps);
rxIn = awgn(txWaveform,snrdB,'measured');

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(...
 'RolloffFactor',s2WaveGen.RolloffFactor, ...
 'InputSamplesPerSymbol',sps,...
 'DecimationFactor',sps);
s = coeffs(rxFilter);
rxFilter.Gain = sum(s.Numerator);

Apply matched filtering and remove the filter delay.

filtOut = rxFilter(rxIn);
rxFrame = filtOut(rxFilter.FilterSpanInSymbols+1:end);

Recover user bits. Enable early termination of the low-density parity-codes (LDPC) decoder.

[bits,FramesLost] = dvbs2BitRecover(rxFrame,10^(-EsNodB/10),1);

Display the number of frames lost and the number of bit errors in each stream.

fprintf('Number of frames lost = %d\n',FramesLost)

 dvbs2BitRecover

2-13

Number of frames lost = 0

for i = 1:s2WaveGen.NumInputStreams
 fprintf('Number of bit errors in stream %d = %d\n',i, ...
 sum(data{i}~=bits{i}))
end

Number of bit errors in stream 1 = 0
Number of bit errors in stream 2 = 0
Number of bit errors in stream 3 = 0

Recover Data Bits from Transport Stream DVB-S2 Transmission with ISSYI Enabled

Recover user packets (UPs) in a multi-input transport stream (TS) Digital Video Broadcasting Satellite
Second Generation (DVB-S2) transmission with constant coding and modulation.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip','file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

numFrames = 1;

Create a DVB-S2 System object with constant coding and modulation configuration for a multi-input
TS. Specify a short forward error correction (FEC) frame format and enable the input stream
synchronization (ISSY).

s2WaveGen = dvbs2WaveformGenerator;
s2WaveGen.NumInputStreams = 3;
s2WaveGen.FECFrame = "short";
s2WaveGen.MODCOD = 10; % QPSK 8/9
s2WaveGen.DFL = 13920;
s2WaveGen.ISSYI = true;

Create a bit vector of information bits of concatenated TS UPs.

syncBits = [0 1 0 0 0 1 1 1]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
data = cell(1,s2WaveGen.NumInputStreams);
for i = 1:s2WaveGen.NumInputStreams
 numPkts = s2WaveGen.MinNumPackets(i)*numFrames;
 txRawPkts = randi([0 1],pktLen,numPkts);
 ISSY = randi([0 1],16,numPkts); % ISCRFormat is 'short' by default
 % 'short' implies the default length of ISSY as 2 bytes
 txPkts = [repmat(syncBits,1,numPkts); txRawPkts; ISSY]; % ISSY is appended at the end of UP
 data{i} = txPkts(:);
end

2 Functions

2-14

Generate the DVB-S2 time-domain waveform using the input information bits. Flush the transmit
filter to handle the filter delay and recover the complete frame.

txWaveform = [s2WaveGen(data); flushFilter(s2WaveGen)];

Add additive white Gaussian noise (AWGN) to the generated waveform. Specify the samples per
symbol for the baseband filter.

sps = s2WaveGen.SamplesPerSymbol;
EsNodB = 12;
snrdB = EsNodB - 10*log10(sps);
rxIn = awgn (txWaveform,snrdB,'measured');

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(...
 'RolloffFactor',s2WaveGen.RolloffFactor, ...
 'InputSamplesPerSymbol',sps,...
 'DecimationFactor', sps);
s = coeffs(rxFilter);
rxFilter.Gain = sum(s.Numerator);

Apply matched filtering and remove filter delay.

filtOut = rxFilter(rxIn);
rxFrame = filtOut(rxFilter.FilterSpanInSymbols+1:end);

Recover UPs. Display the number of frames lost and the number of bit errors in each stream.

[bits,FramesLost,pktCRCStat] = dvbs2BitRecover(rxFrame,10^(-EsNodB/10));
fprintf('Number of frames lost = %d\n',FramesLost)

Number of frames lost = 0

for i = 1:s2WaveGen.NumInputStreams
 fprintf('Number of bit errors in stream %d = %d\n',i, ...
 numel(pktCRCStat{i})-sum(pktCRCStat{i}))
end

Number of bit errors in stream 1 = 0
Number of bit errors in stream 2 = 0
Number of bit errors in stream 3 = 0

Input Arguments
RXFRAME — Received IQ symbols from PL frames of DVB-S2 transmission
column vector

Received IQ symbols from PL frames of a DVB-S2 single-input or multi-input transmission, specified
as a column vector. RXFRAME can contain one or multiple PL frames.

The length of RXFRAME depends on the value of the properties FECFrame, MODCOD, and HasPilots
of the dvbs2WaveformGenerator System object™.
Data Types: double
Complex Number Support: Yes

 dvbs2BitRecover

2-15

NVAR — Noise variance estimate
nonnegative scalar

Noise variance estimate that the function adds to the input IQ symbols, specified as a nonnegative
scalar. NVAR is used as a scaling factor to calculate the soft bits from the IQ symbols.

When you specify NVAR as 0, the function uses a value of 1e-5, which corresponds to a signal-to-noise
ratio (SNR) of 50 dB.
Data Types: double

EARLYTERM — Flag for early termination of LDPC decoder
0 or false (default) | 1 or true

Flag for early termination of the LDPC decoder when all parity-checks are satisfied, specified as a set
logical 1 (true) or 0 (false). When set to 1 (true), the LDPC decoder is terminated when all parity
checks are satisfied.

When you set this value to 0 (false), the maximum decoding iteration limit is 50.
Data Types: logical

Output Arguments
BITS — Recovered data bits
cell array of column vectors

Recovered data bits, returned as a cell array of column vectors. Each element of the cell array is of
data type int8. This output can be either UPs or generic data stream, depending of the
StreamFormat property of the dvbs2WaveformGenerator System object.

For a multi-input stream transmission, each element of the cell array corresponds to an individual
input stream.
Data Types: cell

NUMFRAMESLOST — Number of lost baseband frames
nonnegative integer

Number of lost baseband frames, returned as a nonnegative integer. If the baseband header CRC
fails, the frame is considered lost.
Data Types: double

PKTCRCSTATUS — UP CRC status
cell array of column vectors

UP CRC status, returned as a cell array of column vectors. Each element of the cell array is of data
type logical. For a multi-input stream transmission, each element of the cell array corresponds to
an individual input stream.
Dependencies

PKTCRCSTATUS applies for only the input streams where the value of the UPL property of
dvbs2WaveformGenerator System object is nonzero.
Data Types: cell

2 Functions

2-16

References
[1] ETSI Standard EN 302 307-1 V1.4.1(2014-11). Digital Video Broadcasting (DVB); Second

Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting,
Interactive Services, News Gathering and other Broadband Satellite Applications (DVB-S2).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dvbs2WaveformGenerator

Introduced in R2021a

 dvbs2BitRecover

2-17

p618PropagationLosses
Calculate Earth-space propagation losses, cross-polarization discrimination, and sky noise
temperature

Syntax
[pl,xpd,tsky] = p618PropagationLosses(p618cfg)
[pl,xpd,tsky] = p618PropagationLosses(p618cfg,Name,Value)

Description
[pl,xpd,tsky] = p618PropagationLosses(p618cfg) returns Earth-space propagation losses
pl, cross-polarization discrimination xpd, and sky noise temperature tsky, as defined in the ITU-R
P.618 recommendation [1]. p618cfg specifies the P.618 configuration parameters.

This function requires MAT-files with digital maps from International Telecommunication Union (ITU)
documents. If they are not available on the path, download and uncompress the data files from
https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz to a location on the
MATLAB path.

[pl,xpd,tsky] = p618PropagationLosses(p618cfg,Name,Value) specifies additional
options using one or more name-value pair arguments.

Examples

Calculate Propagation Losses, Cross-Polarization Discrimination, and Sky Noise
Temperature

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and unzip the MAT-files.

if ~exist('ITURDigitalMaps.tar.gz', 'file')
 url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz';
 websave('ITURDigitalMaps.tar.gz',url);
 untar('ITURDigitalMaps.tar.gz');
end

Create a default P.618 configuration object.

cfg = p618Config;

Specify the time percentage of excess for the rain attenuation per annum as 0.01 and the time
percentage of excess for the total attenuation per annum as 0.001.

cfg.RainAnnualExceedance = 0.01;
cfg.TotalAnnualExceedance = 0.001;

Calculate the propagation losses, cross-polarization discrimination, and sky noise temperature.

[pl,xpd,tsky] = p618PropagationLosses(cfg)

2 Functions

2-18

https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz

pl = struct with fields:
 Ag: 0.2269
 Ac: 0.4552
 Ar: 6.7981
 As: 0.2633
 At: 15.6091

xpd = 32.8876

tsky = 267.4689

Calculate Earth-space Propagation Losses Using Name-Value Pair Arguments

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and untar the MAT-files.

if ~exist('ITURDigitalMaps.tar.gz','file')
 url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz';
 websave('ITURDigitalMaps.tar.gz',url);
 untar('ITURDigitalMaps.tar.gz');
end

Create a P.618 configuration object with a signal frequency of 20 GHz.

cfg = p618Config('Frequency',20e9);

Specify the surface water vapor density as 2.8 g
m3 , the total columnar content of the cloud liquid water

as 1.4 kg
m2 , and the median value of the wet surface refractivity as 1.2. Set the earth station height as

0.5 km. Calculate the Earth-space propagation losses.

pl = p618PropagationLosses(cfg,'StationHeight',0.5,...
 'WaterVaporDensity',2.8,...
 'TotalColumnarContent',1.4,...
 'WetSurfaceRefractivity',1.2)

pl = struct with fields:
 Ag: 0.8649
 Ac: 1.0987
 Ar: 0.8907
 As: 0.1372
 At: 2.8590

Calculate Propagation Losses in Light Rainfall

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and unzip the MAT-files.

if ~exist('ITURDigitalMaps.tar.gz','file')
 url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz';

 p618PropagationLosses

2-19

 websave('ITURDigitalMaps.tar.gz',url);
 untar('ITURDigitalMaps.tar.gz');
end

Create a P.618 configuration object that occupies a signal frequency of 20 GHz.

cfg = p618Config('Frequency',20e9);

Calculate the propagation losses in a light rainfall of 1 mm/hr with an earth station height of 0.75 km.

pl = p618PropagationLosses(cfg,'RainRate',1,'StationHeight',0.75)

pl = struct with fields:
 Ag: 0.7996
 Ac: 0.8793
 Ar: 0.0177
 As: 0.3187
 At: 1.7514

Input Arguments
p618cfg — P.618 configuration
p618Config object

P.618 configuration required for the calculation of the propagation losses, cross-polarization
discrimination, and sky noise temperature, specified as a p618Config object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'StationHeight',1.5 specifies the earth station height as 1.5 km.

StationHeight — Height of earth station
nonnegative scalar

Height of the earth station above the mean sea level in km, specified as the comma-separated pair
consisting of 'StationHeight' and a nonnegative scalar. The maximum supported value is 100. If the
local data is not available as an input, the function uses the digital maps provided in ITU-R P.1511
section 1, Annex 1 [3] to obtain the station height value.
Data Types: double | single

Temperature — Temperature of earth surface
nonnegative scalar

Temperature of the earth surface in kelvin, specified as the comma-separated pair consisting of
'Temperature' and a nonnegative scalar. If the local data is not available as an input, the function
uses the map of the mean annual surface temperature provided in ITU-R P.1510 section 1, Annex 1 [4]
to obtain the temperature value.
Data Types: double | single

2 Functions

2-20

Pressure — Dry air pressure at earth surface
nonnegative scalar

Dry air pressure at the earth surface in hPa, specified as the comma-separated pair consisting of
'Pressure' and a nonnegative scalar. If the local data is not available as an input, the function uses
the mean annual global reference atmosphere provided in ITU-R P.835 section 1.1, Annex 1 [5] to
obtain the air pressure value.
Data Types: double | single

WaterVaporDensity — Surface water vapor density
nonnegative scalar

Surface water vapor density in g/m3, specified as the comma-separated pair consisting of
'WaterVaporDensity' and a nonnegative scalar. If the local data is not available as an input, the
function uses the digital maps provided in ITU-R P.836 section 1, Annex 1 [6] to estimate the value of
the water vapor density.
Data Types: double | single

IntegratedWaterVaporContent — Integrated water vapor content
positive scalar

Integrated water vapor content exceeded for the percentage of GasAnnualExceedance in an average
year, specified as the comma-separated pair consisting of 'IntegratedWaterVaporContent' and a
positive scalar. Units are in kg/m2 or mm. If the local data is not available as an input, the function
uses the digital maps provided in ITU-R P.836 section 1, Annex 2 [6] to obtain the value of the
integrated water vapor content.
Data Types: double | single

TotalColumnarContent — Total columnar content of cloud liquid water
nonnegative scalar

Total columnar content of the cloud liquid water exceeded for the percentage of
CloudAnnualExceedance in an average year, specified as the comma-separated pair consisting of
'TotalColumnarContent' and a nonnegative scalar. Units are in kg/m2 or mm. If the local data is
not available as an input, the function uses the digital maps provided in ITU-R P.840 section 3.1,
Annex 1 [7] to obtain the value of the total columnar content.
Data Types: double | single

RainRate — Point rainfall rate
nonnegative scalar

Point rainfall rate at the location for 0.01% of an average year, specified as the comma-separated pair
consisting of 'RainRate' and a nonnegative scalar. Units are in mm/hr. If the local data is not
available as an input, the function uses the digital maps provided in ITU-R P.837, Annex 1 [8] to
obtain the value of the point rainfall rate.
Data Types: double | single

WetSurfaceRefractivity — Median value of wet term of surface refractivity
nonnegative scalar

Median value of the wet term of the surface refractivity, specified as the comma-separated pair
consisting of 'WetSurfaceRefractivity' and a nonnegative scalar. If the local data is not available

 p618PropagationLosses

2-21

as an input, the function uses the digital maps provided in ITU-R P.453 section 2.2, Annex 1 [9] to
obtain the value of the wet surface refractivity.
Data Types: double | single

MeanRadiatingTemperature — Atmospheric mean radiating temperature
nonnegative scalar

Atmospheric mean radiating temperature in kelvin, specified as the comma-separated pair consisting
of 'MeanRadiatingTemperature' and a nonnegative scalar. If the local data is not available as an
input, the function uses an atmospheric mean radiating temperature of 275 K in the computation.
Data Types: double | single

Output Arguments
pl — Earth-space propagation losses information
structure

Earth-space propagation losses information, returned as a structure containing these fields.

Fields Description
At Total atmospheric attenuation (in dB)
Ag Gaseous attenuation (in dB)
Ac Cloud and fog attenuation (in dB)
Ar Rain attenuation (in dB)
As Attenuation due to tropospheric scintillation (in

dB)

xpd — Cross-polarization discrimination
scalar

Cross-polarization discrimination in (dB) not exceeded for the percentage of the
RainAnnualExceedance, returned as a scalar.

tsky — Sky noise temperature
nonnegative scalar

Sky noise temperature (in kelvin) at the ground station antenna, returned as a nonnegative scalar.

References
[1] International Telecommunication Union, ITU-R Recommendation P.618 (12/2017).

[2] International Telecommunication Union, ITU-R Recommendation P.676 (08/2019).

[3] International Telecommunication Union, ITU-R Recommendation P.1511 (08/2019).

[4] International Telecommunication Union, ITU-R Recommendation P.1510 (06/2017).

[5] International Telecommunication Union, ITU-R Recommendation P.835 (12/2017).

[6] International Telecommunication Union, ITU-R Recommendation P.836 (12/2017).

2 Functions

2-22

[7] International Telecommunication Union, ITU-R Recommendation P.840 (08/2019).

[8] International Telecommunication Union, ITU-R Recommendation P.837 (06/2017).

[9] International Telecommunication Union, ITU-R Recommendation P.453 (08/2019).

[10] International Telecommunication Union, ITU-R Recommendation P.839 (09/2013).

[11] International Telecommunication Union, ITU-R Recommendation P.838 (03/2005).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Supports only MEX code generation.

See Also
Objects
p618Config | p618SiteDiversityConfig

Functions
p618SiteDiversityOutage

Introduced in R2021a

 p618PropagationLosses

2-23

p618SiteDiversityOutage
Calculate outage probability due to rain attenuation with site diversity

Syntax
Outage = p618SiteDiversityOutage(cfgsd)
Outage = p618SiteDiversityOutage(cfgsd,Name,Value)

Description
Outage = p618SiteDiversityOutage(cfgsd) returns the outage probability due to rain
attenuation with site diversity. The function calculates this value as per the ITU-R P.618
recommendation [1].

This function requires MAT-files with digital maps from International Telecommunication Union (ITU)
documents. If they are not available on the path, download and uncompress the data files from
https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz to a location on the
MATLAB path.

Outage = p618SiteDiversityOutage(cfgsd,Name,Value) specifies additional options using
one or more name-value pair arguments.

Examples

Calculate Outage Probability due to Rain Attenuation with Site Diversity

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and untar the MAT-files.

if ~exist('ITURDigitalMaps.tar.gz','file')
 url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz';
 websave('ITURDigitalMaps.tar.gz',url);
 untar('ITURDigitalMaps.tar.gz');
end

Create a P.618 site diversity configuration object with a signal frequency of 25 GHz.

cfgsd = p618SiteDiversityConfig;
cfgsd.Frequency = 25e9;

Specify the polarization tilt angles for two sites as [-90 90] degrees, separation between the two sites
as 50 km, and attenuation threshold on the two links as [9 9] dB.

cfgsd.PolarizationTiltAngle = [-90 90];
cfgsd.SiteDistance = 50;
cfgsd.AttenuationThreshold = [9 9];

Calculate the outage probability due to rain attenuation with site diversity.

outage = p618SiteDiversityOutage(cfgsd)

2 Functions

2-24

https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz

outage = 0.0338

Calculate Outage Probability with Site Diversity Using Name-Value Pair Arguments

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute these commands to download and untar the MAT-files.

if ~exist('ITURDigitalMaps.tar.gz','file')
 url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz';
 websave('ITURDigitalMaps.tar.gz',url);
 untar('ITURDigitalMaps.tar.gz');
end

Create a default P.618 site diversity configuration object. Change the signal frequency to 25 GHz.

cfgsd = p618SiteDiversityConfig;
cfgsd.Frequency = 25e9;

Specify the separation between two sites as 50 km and the attenuation threshold on the two links as
[9 9] dB.

cfgsd.SiteDistance = 50;
cfgsd.AttenuationThreshold = [9 9];

Calculate the outage probability for the specified site diversity configuration.

outage = p618SiteDiversityOutage(cfgsd,'RainAnnualExceedances',[0.01 0.05 0.2],...
 'RainProbability1',0.3,...
 'RainProbability2',0.5)

outage = 0.0339

Input Arguments
cfgsd — P.618 site diversity configuration
p618SiteDiversityConfig object

P.618 site diversity configuration required for the calculation of the outage probability due to rain
attenuation, specified as a p618SiteDiversityConfig object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'RainAnnualExceedances',[0.01 0.02 0.03 0.05] specifies the average annual
time percentage of excess for the rain attenuation.

RainAnnualExceedances — Average annual time percentage of excess for rain attenuation
nonnegative vector

 p618SiteDiversityOutage

2-25

Average annual time percentage of excess for the rain attenuation, specified as the comma-separated
pair consisting of 'RainAnnualExceedances' and a nonnegative vector. The values in this vector
must be less than the probability of rain at the two sites.

If the local data is not available as an input, the function uses [0.01 0.02 0.03 0.05 0.1 0.2
0.3 0.5 1 2 3 5] as the default vector.
Data Types: double | single

RainAttenuations1 — Rain attenuations at site 1
nonnegative vector

Rain attenuations (in dB) at site 1, specified as the comma-separated pair consisting of
'RainAttenuations1' and a nonnegative vector. This value specifies the rain attenuation exceeded
for the percentages given in the RainAnnualExceedances name-value pair argument. The
dimension of this value must match that of the RainAnnualExceedances.

If the local data is not available as an input, the function uses the method as defined in section 2.2.1.1
of the ITU-R P.618 [1] recommendation to calculate the rain attenuations for site 1.

Note If you do not specify RainAttenuations1, then RainAnnualExceedances must be in the
range from 0.01% to 5%.

Data Types: double | single

RainAttenuations2 — Rain attenuations at site 2
nonnegative vector

Rain attenuations (in dB) at site 2, specified as the comma-separated pair consisting of
'RainAttenuations2' and a nonnegative vector. This value specifies the rain attenuation exceeded
for the percentages given in the RainAnnualExceedances name-value pair argument. The
dimension of this value must match that of the RainAnnualExceedances.

If the local data is not available as an input, the function uses the method as defined in section 2.2.1.1
of the ITU-R P.618 recommendation to calculate the rain attenuations for site 2.

Note If you do not specify RainAttenuations2, then RainAnnualExceedances must be in the
range from 0.01% to 5%.

Data Types: double | single

RainProbabilty1 — Probability of rain for site 1
nonnegative scalar

Probability of (in %) rain for site 1, specified as the comma-separated pair consisting of
'RainProbabilty1' and a nonnegative scalar.

If the local measured rainfall rate data is not available as an input, the function uses the digital maps
as defined in ITU-R P.837 Annex 1 [2] to calculate the rain probability for the sites.
Data Types: double | single

2 Functions

2-26

RainProbabilty2 — Probability of rain for site 2
nonnegative scalar

Probability of (in %) rain for site 2, specified as the comma-separated pair consisting of
'RainProbabilty2' and a nonnegative scalar.

If the local measured rainfall rate data is not available as an input, the function uses the digital maps
as defined in ITU-R P.837 Annex 1 [2] to calculate the rain probability for the sites.
Data Types: double | single

Output Arguments
Outage — Outage probability due to rain attenuation with site diversity
nonnegative scalar

Outage probability due to rain attenuation with site diversity, returned as a nonnegative scalar. This
argument predicts the joint probability (Pr(A1≥ a1, A2 ≥ a2)), where the attenuation on the path of the
site 1 must exceed a1 and the attenuation on the path of the site 2 must exceed a2.

References
[1] International Telecommunication Union, ITU-R Recommendation P.618 (12/2017).

[2] International Telecommunication Union, ITU-R Recommendation P.837 (06/2017).

[3] International Telecommunication Union, ITU-R Recommendation P.1511 (08/2019).

[4] International Telecommunication Union, ITU-R Recommendation P.1510 (06/2017).

[5] International Telecommunication Union, ITU-R Recommendation P.836 (12/2017).

[6] International Telecommunication Union, ITU-R Recommendation P.840 (08/2019).

[7] International Telecommunication Union, ITU-R Recommendation P.453 (08/2019).

[8] International Telecommunication Union, ITU-R Recommendation P.839 (09/2013).

[9] International Telecommunication Union, ITU-R Recommendation P.838 (03/2005).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Supports only MEX code generation.

See Also
Objects
p618Config | p618SiteDiversityConfig

 p618SiteDiversityOutage

2-27

Functions
p618PropagationLosses

Introduced in R2021a

2 Functions

2-28

ccsdsTCWaveform
Generate CCSDS TC waveform

Syntax
waveform = ccsdsTCWaveform(bits,cfgFormat)
[waveform,encodedBits] = ccsdsTCWaveform(bits,cfgFormat)

Description
waveform = ccsdsTCWaveform(bits,cfgFormat) generates a Consultative Committee for
Space Data Systems (CCSDS) Telecommand (TC) time-domain waveform, waveform, for the
corresponding input bits, bits, and the given format configuration, cfgFormat.

[waveform,encodedBits] = ccsdsTCWaveform(bits,cfgFormat) also returns the bits
obtained after TC synchronization and channel coding sublayer operations.

Examples

Create CCSDS TC Waveform for Multiple CLTUs

Create a Consultative Committee for Space Data Systems (CCSDS) Telecommand (TC) time-domain
waveform for multiple communications link transmission units (CLTUs).

Create a default CCSDS TC configuration object.

cfg = ccsdsTCConfig;
disp(cfg)

 ccsdsTCConfig with properties:

 DataFormat: "CLTU"
 ChannelCoding: "BCH"
 HasRandomizer: 1
 Modulation: "PCM/PSK/PM"
 PCMFormat: "NRZ-L"
 ModulationIndex: 0.4000
 SubcarrierFrequency: 16000
 SymbolRate: 4000
 SamplesPerSymbol: 10

 Read-only properties:
 SubcarrierWaveform: "sine"

Specify the number of CLTUs and the transfer frame length.

numCLTUs = 10;
transferFramesLength = 8; % Number of octets in each transfer frame

Generate the CCSDS TC time-domain waveform for the transfer frames.

 ccsdsTCWaveform

2-29

c = cell(1,numCLTUs); % Cell array to store the generated waveform for all CLTUs
for k=1:numCLTUs
 bits = randi([0 1],8*transferFramesLength,1); % Bits in the TC transfer frame
 waveform = ccsdsTCWaveform(bits,cfg);
 c{1,k} = waveform; % Waveform for each CLTU
end

Create a dsp.SpectrumAnalyzer System object to display the frequency spectrum of the generated
CCSDS TC time-domain waveform from the last CLTU.

scope = dsp.SpectrumAnalyzer;
scope.SampleRate = cfg.SamplesPerSymbol*cfg.SymbolRate;
scope(waveform) % Last CLTU spectrum display

Create CCSDS TC Waveform for Acquisition Sequence

Create a Consultative Committee for Space Data Systems (CCSDS) Telecommand (TC) time-domain
waveform for a acquisition sequence with 20 octets.

Create a CCSDS TC configuration object, and then specify the object properties. Display the object
properties.

2 Functions

2-30

https://www.mathworks.com/help/dsp/ref/dsp.spectrumanalyzer-system-object.html

cfg = ccsdsTCConfig;
cfg.DataFormat = "acquisition sequence";
cfg.Modulation = "PCM/PM/biphase-L";
cfg.ModulationIndex = 1.2;
disp(cfg)

 ccsdsTCConfig with properties:

 DataFormat: "acquisition sequence"
 Modulation: "PCM/PM/biphase-L"
 ModulationIndex: 1.2000
 SamplesPerSymbol: 10

Generate the CCSDS TC waveform.

bits = repmat([0;1],8*10,1); % Alternating 1s and 0s with 0s as a starting sequence bit
waveform = ccsdsTCWaveform(bits,cfg);

Input Arguments
bits — Information bits
binary-valued column vector

Information bits, specified as a binary-valued column vector.

• When you set the DataFormat property of the ccsdsTCConfig object to "CLTU", the length of
this vector must be an integer multiple of 8.

• When you set the DataFormat property of the ccsdsTCConfig object to "acquisition
sequence" or "idle sequence", this vector must be a sequence of alternating 1s and 0s,
starting with either 1 or 0.

Data Types: double | int8 | logical

cfgFormat — Format configuration object
ccsdsTCConfig object

Format configuration object, specified as ccsdsTCConfig object. The properties of this object define
the parameters required for CCSDS TC waveform generation.

Output Arguments
waveform — Generated time-domain CCSDS TC waveform
column vector

Generated time-domain CCSDS TC waveform, returned as a column vector. The waveform output is
generated in the form of complex in-phase quadrature (IQ) samples.
Data Types: double

encodedBits — Output bits obtained after TC synchronization and channel coding sublayer
operations
column vector

Output bits obtained after TC synchronization and channel coding sublayer operations, returned as a
column vector.

 ccsdsTCWaveform

2-31

Data Types: double

References
[1] CCSDS 231.0-B-3. Blue Book. Issue 3. "TC Synchronization and Channel Coding."

Recommendation for Space Data System Standards. Washington, D.C.: CCSDS, September
2017.

[2] CCSDS 401.0-B-29. Blue Book. Issue 29. "Radio Frequency and Modulation Systems - Part 1".
Earth Stations and Spacecraft. Washington, D.C.: CCSDS, September 2019.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ccsdsTCIdealReceiver

Objects
ccsdsTCConfig

Introduced in R2021a

2 Functions

2-32

ccsdsTCIdealReceiver
Ideal receiver for CCSDS TC waveform

Syntax
bits = ccsdsTCIdealReceiver(waveform,cfg)
bits = ccsdsTCIdealReceiver(waveform,cfg,Name,Value)

Description
bits = ccsdsTCIdealReceiver(waveform,cfg) recovers transfer frames from a Consultative
Committee for Space Data Systems (CCSDS) Telecommand (TC) waveform, generated using the
ccsdsTCWaveform function. Output bits is the recovered bits for the given format configuration
cfg.

bits = ccsdsTCIdealReceiver(waveform,cfg,Name,Value) specifies options using one or
more name-value pairs. For example, 'NoiseVariance',1e-11 specifies the noise variance of
additive white Gaussian noise (AWGN) on the received waveform as 1e-11.

Examples

Recover Transfer Frame from CCSDS TC Waveform

Recover the transfer frame from the Consultative Committee for Space Data Systems (CCSDS)
Telecommand (TC) waveform.

Create a CCSDS TC object and specify the object properties.

cfg = ccsdsTCConfig;
cfg.HasRandomizer = 1;
cfg.SamplesPerSymbol = 12;
disp(cfg)

 ccsdsTCConfig with properties:

 DataFormat: "CLTU"
 ChannelCoding: "BCH"
 HasRandomizer: 1
 Modulation: "PCM/PSK/PM"
 PCMFormat: "NRZ-L"
 ModulationIndex: 0.4000
 SubcarrierFrequency: 16000
 SymbolRate: 4000
 SamplesPerSymbol: 12

 Read-only properties:
 SubcarrierWaveform: "sine"

Specify the transfer frame length and generate the CCSDS TC waveform for the transfer frame.

 ccsdsTCIdealReceiver

2-33

transferFrameLength = 12; % Number of octets in each transfer frame
data = randi([0 1],8*transferFrameLength,1); % bits in the transfer frame
waveform = ccsdsTCWaveform(data,cfg);

Recover the transfer frame from the CCSDS TC waveform

decodedBits = ccsdsTCIdealReceiver(waveform,cfg,'DecodingMode',"error detecting");

Check if the transfer frame is recovered successfully.

rxBits = decodedBits{1};
bits = rxBits((1:8*transferFrameLength)');
isequal(bits,data)

ans = logical
 1

Input Arguments
waveform — Received time-domain signal
column vector

Received time-domain signal, consisting of complex in-phase quadrature (IQ) samples, specified as a
column vector. The waveform input is a CCSDS TC waveform.

A CCSDS TC waveform can contain one or more communications link transmission units (CLTUs).
Each CLTU can contain one or more transfer frames.
Data Types: single | double
Complex Number Support: Yes

cfg — Format configuration object
ccsdsTCConfig object

Format configuration object, specified as ccsdsTCConfig object. The properties of this object
determine the parameters required for CCSDS TC waveform generation and reception.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: ccsdsIdealReceiver(waveform,cfg,'NoiseVariance',1e-11) specifies the noise
variance of AWGN on the received waveform as 1e-11.

NoiseVariance — Noise variance of AWGN
1e-10 (default) | positive scalar

Noise variance of AWGN that is added to the input IQ symbols of the waveform, specified as a
positive scalar.

Dependencies

To enable this name-value pair, set the ChannelCoding property of the cfg input to "LDPC".

2 Functions

2-34

Data Types: double

DecodingMode — Decoding mode
"error correcting" (default) | "error detecting"

Decoding mode to decode the Bose Chaudhuri Hocquenghem (BCH) encoded codewords, specified as
"error correcting" or "error detecting".

'DecodingMode' defines the allowed number of errors in the start sequence of the CLTU. In error
detecting mode, the allowed number of errors in the start sequence is zero. In error correcting mode,
the allowed number of errors in the start sequence is one.

Dependencies

To enable this name-value pair, set the ChannelCoding property of the cfg input to "BCH".
Data Types: char | string

DetectionThreshold — Threshold to detect start sequence
0.7 (default) | scalar in the range [0.5, 1]

Threshold to detect the start sequence, by calculating the normalized correlation metric with the
known start sequence, specified as a scalar in the range [0.5, 1]. When the computed normalized
correlation metric is greater than or equal to 'DetectionThreshold', the start sequence of the
CLTU is detected.

Dependencies

To enable this name-value pair, set the ChannelCoding property of the cfg input to "LDPC".
Data Types: double

Output Arguments
bits — Recovered transfer frames
cell array of column vectors

Recovered transfer frames, returned as a cell array of column vectors. Each element of the cell array
is of data type int8.

Bits in the cell array of one or more column vectors, corresponds to the number of CLTUs present in
the waveform input. Recovered transfer frames of CLTUs can contain fill bits. The fill bits removal
procedure is not performed in the TC synchronization and channel coding sublayer.
Data Types: int8 | cell

References
[1] CCSDS 231.0-B-3. Blue Book. Issue 3. "TC Synchronization and Channel Coding."

Recommendation for Space Data System Standards. Washington, D.C.: CCSDS, September
2017.

[2] CCSDS 401.0-B-29. Blue Book. Issue 29. "Radio Frequency and Modulation Systems - Part 1".
Earth Stations and Spacecraft. Washington, D.C.: CCSDS, September 2019.

 ccsdsTCIdealReceiver

2-35

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ccsdsTCWaveform

Objects
ccsdsTCConfig

Introduced in R2021a

2 Functions

2-36

info
Characteristic information about object

Syntax
s = info(obj)

Description
s = info(obj) returns a structure containing the characteristic information of the specified input
object obj.

Examples

Get DVB-S2 Waveform Generator Information and Check Transmit Filter Delay

Get information from a dvbs2WaveformGenerator System object by using the info function. Then
retrieve the filter residual samples by using the flushFilter object function.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip', 'file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

numFrames = 1;

Create a Digital Video Broadcasting standard (DVB-S2) System object, and then specify its properties.

s2WaveGen = dvbs2WaveformGenerator;
s2WaveGen.NumInputStreams = 2;
s2WaveGen.MODCOD = [21 16];
s2WaveGen.DFL = 47008;
s2WaveGen.ISSYI = true;
s2WaveGen.SamplesPerSymbol = 2;
disp(s2WaveGen)

 dvbs2WaveformGenerator with properties:

 StreamFormat: "TS"
 NumInputStreams: 2
 FECFrame: "normal"
 MODCOD: [21 16]

 info

2-37

 DFL: 47008
 ScalingMethod: "outer radius as 1"
 HasPilots: 0
 RolloffFactor: 0.3500
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 2
 ISSYI: true
 ISCRFormat: "short"

 Show all properties

Get the characteristic information about the DVB-S2 waveform generator.

info(s2WaveGen)

ans = struct with fields:
 ModulationScheme: {'16APSK' '8PSK'}
 LDPCCodeIdentifier: {'5/6' '8/9'}

Create the bit vector of input information bits, data, of concatenated TS user packets.

syncBits = [0 1 0 0 0 1 1 1]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
data = cell(1,s2WaveGen.NumInputStreams);
for i = 1:s2WaveGen.NumInputStreams
 numPkts = s2WaveGen.MinNumPackets(i)*numFrames;
 txRawPkts = randi([0 1],pktLen,numPkts);
 ISSY = randi([0 1],16,numPkts); % ISCRFormat is 'short' by default
 % 'short' implies the default length of ISSY as 2 bytes
 txPkts = [repmat(syncBits,1,numPkts);txRawPkts;ISSY]; % ISSY is appended at the end of UP
 data{i} = txPkts(:);
end

Generate a DVB-S2 time-domain waveform using the information bits.

txWaveform = [s2WaveGen(data)];

Check the filter residual data samples that remain in the filter delay.

flushFilter(s2WaveGen)

ans = 20×1 complex

 0.0153 + 0.4565i
 0.2483 + 0.5535i
 0.3527 + 0.3972i
 0.3541 - 0.0855i
 0.3505 - 0.4071i
 0.4182 - 0.1962i
 0.5068 + 0.0636i
 0.4856 - 0.1532i
 0.3523 - 0.4153i
 0.1597 - 0.2263i
 ⋮

2 Functions

2-38

Get DVB-S2X Waveform Generator Information and Check Transmit Filter Delay

Get information from a dvbs2xWaveformGenerator System object by using the info function.
Then retrieve the filter residual samples by using the flushFilter object function.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip','file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

numFrames = 2;

Create a Digital Video Broadcasting Satellite Second Generation extended (DVB-S2X) System object
and specify its properties. Use time slicing technique and variable coding and modulation
configuration mode.

s2xWaveGen = dvbs2xWaveformGenerator();
s2xWaveGen.HasTimeSlicing = true;
s2xWaveGen.NumInputStreams = 2;
s2xWaveGen.PLSDecimalCode = [135 145]; % QPSK 9/20 and 8PSK 25/36
s2xWaveGen.DFL = [18048 44656];
s2xWaveGen.PLScramblingIndex = [0 1];
disp(s2xWaveGen)

 dvbs2xWaveformGenerator with properties:

 StreamFormat: "TS"
 HasTimeSlicing: true
 NumInputStreams: 2
 PLSDecimalCode: [135 145]
 DFL: [18048 44656]
 PLScramblingIndex: [0 1]
 RolloffFactor: 0.3500
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 4
 ISSYI: false

 Show all properties

Get the characteristic information about the DVB-S2X waveform generator.

info(s2xWaveGen)

ans = struct with fields:
 FECFrame: {'normal' 'normal'}
 ModulationScheme: {'QPSK' '8PSK'}
 LDPCCodeIdentifier: {'9/20' '25/36'}

 info

2-39

Create the bit vector of input information bits, data, of concatenated TS user packets for each input
stream.

syncBits = [0 1 0 0 0 1 1 1]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
data = cell(1, s2xWaveGen.NumInputStreams);
for i = 1:s2xWaveGen.NumInputStreams
 numPkts = s2xWaveGen.MinNumPackets(i)*numFrames;
 txRawPkts = randi([0 1], pktLen, numPkts);
 txPkts = [repmat(syncBits, 1, numPkts); txRawPkts];
 data{i} = txPkts(:);
end

Generate a DVB-S2X time-domain waveform using the information bits.

txWaveform = s2xWaveGen(data);

Check the filter residual data samples that remain in the filter delay.

flushFilter(s2xWaveGen)

ans = 40×1 complex

 -0.2412 - 0.0143i
 -0.2619 - 0.0861i
 -0.2726 - 0.1337i
 -0.2511 - 0.1597i
 -0.1851 - 0.1680i
 -0.0780 - 0.1602i
 0.0448 - 0.1288i
 0.1598 - 0.0751i
 0.2482 - 0.0049i
 0.3026 + 0.0702i
 ⋮

Get CCSDS TM Waveform Generator Information and Check Transmit Filter Delay

Get information from a ccsdsTMWaveformGenerator System object by using the info function.
Then retrieve the filter residual samples by using the flushFilter object function.

Create a Consultative Committee for Space Data Systems (CCSDS) Telemetry (TM) System object.
Set the waveform type as synchronization and channel coding with low-density parity-check
(LDPC) channel coding. Display the properties.

tmWaveGen = ccsdsTMWaveformGenerator;
tmWaveGen.WaveformSource = "synchronization and channel coding";
tmWaveGen.ChannelCoding = "LDPC";
tmWaveGen.NumBitsInInformationBlock = 1024;
tmWaveGen.Modulation = "QPSK";
tmWaveGen.CodeRate = "1/2";
disp(tmWaveGen)

 ccsdsTMWaveformGenerator with properties:

2 Functions

2-40

 WaveformSource: "synchronization and channel coding"
 HasRandomizer: true
 HasASM: true
 PCMFormat: "NRZ-L"

 Channel coding properties:
 ChannelCoding: "LDPC"
 NumBitsInInformationBlock: 1024
 CodeRate: "1/2"
 IsLDPCOnSMTF: false

 Digital modulation and filter properties:
 Modulation: "QPSK"
 PulseShapingFilter: "root raised cosine"
 RolloffFactor: 0.3500
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 10

 Use get to show all properties

Specify the number of transfer frames.

numTF = 20;

Get the characteristic information about the CCSDS TM waveform generator.

info(tmWaveGen)

ans = struct with fields:
 ActualCodeRate: 0.5000
 NumBitsPerSymbol: 2
 SubcarrierFrequency: []

Generate the input bits for the CCSDS TM waveform generator, and then generate the waveform.

bits = randi([0 1], tmWaveGen.NumInputBits*numTF,1);
waveform = tmWaveGen(bits);

Check the filter residual data samples that remain in the filter delay.

flushFilter(tmWaveGen)

ans = 100×1 complex

 -0.0772 - 0.0867i
 -0.0751 - 0.0859i
 -0.0673 - 0.0788i
 -0.0549 - 0.0654i
 -0.0388 - 0.0469i
 -0.0200 - 0.0250i
 0.0002 - 0.0012i
 0.0208 + 0.0227i
 0.0405 + 0.0453i
 0.0587 + 0.0653i
 ⋮

 info

2-41

Get ETSI Rician Channel Information

Get information from a etsiRicianChannel System object by using the info object function.

Create a European Telecommunication Standards Institute (ETSI) Rician channel System object, and
then specify its properties.

chan = etsiRicianChannel;
chan.SampleRate = 2e5;
chan.KFactor = 10;
chan.MaximumDopplerShift = 20;
chan.NumSinusoids = 58;
disp(chan)

 etsiRicianChannel with properties:

 SampleRate: 200000
 KFactor: 10
 MaximumDopplerShift: 20

 Use get to show all properties

Pass data through the channel.

txWaveform = randi([0 1],500,1);
rxWaveform = chan(txWaveform);

Get the characteristic information about the ETSI Rician channel.

info(chan)

ans = struct with fields:
 ChannelFilterDelay: 0
 ChannelFilterCoefficients: 1
 NumSamplesProcessed: 500

Input Arguments
obj — Input object
dvbs2WaveformGenerator | dvbs2xWaveformGenerator | etsiRicianChannel |
ccsdsTMWaveformGenerator

Input object to get information from, specified as a dvbs2WaveformGenerator,
dvbs2xWaveformGenerator, ccsdsTMWaveformGenerator, or etsiRicianChannel System
object.

Output Arguments
s — Characteristic information of specified object
structure

Characteristic information of the specified object, returned as a structure. The fields of the structure
depends on the obj input.

2 Functions

2-42

• If obj is a dvbs2WaveformGenerator System object, the output structure has these fields,
consisting of physical layer information about the DVB-S2 waveform generator.

Field Value Description
ModulationScheme String scalar (default) or cell

array of character vectors
Modulation scheme, returned
as a string scalar for single-
input stream and a cell array
of character vectors of length
equal to the
NumInputStreams property
of the
dvbs2WaveformGenerator
object for multi-input streams.

LDPCCodeIdentifier String scalar (default) or cell
array of character vectors

LDPC code identifier used in
forward error correction
(FEC), returned as a string
scalar for single-input stream
and a cell array of character
vectors of length equal to
NumInputStreams property
of the
dvbs2WaveformGenerator
object for multi-input streams.

• If obj is a dvbs2xWaveformGenerator System object, the output structure has these fields,
consisting of physical layer information about the DVB-S2X waveform generator.

Field Value Description
FECFrame String scalar (default) or cell

array of character vectors
FEC frame format, returned
as a string scalar for single-
input stream and a cell array
of character vectors of length
equal to NumInputStreams
property of
dvbs2xWaveformGenerator
object for multi-input streams.

ModulationScheme String scalar (default) or cell
array of character vectors

Modulation scheme, returned
as a string scalar for single-
input stream and a cell array
of character vectors of length
equal to NumInputStreams
property of
dvbs2xWaveformGenerator
object for multi-input streams.

 info

2-43

Field Value Description
LDPCCodeIdentifier String scalar (default) or cell

array of character vectors
LDPC code identifier used in
forward error correction
(FEC), returned as a string
scalar for single-input stream
and a cell array of character
vectors of length equal to
NumInputStreams property
of
dvbs2xWaveformGenerator
object for multi-input streams.

• If obj is an etsiRicianChannel System object, the output structure has these fields, consisting
of information about the fading channel.

Field Value Description
ChannelFilterDelay 0 Channel filter delay in

samples returned as 0 always
(due to flat-fading nature of
the channel).

ChannelFilterCoefficien
ts

1 Channel filter coefficient used
to convert path gains to
channel filter tap gains,
returned as 1 always (as
etsiRicianChannel
describes a single path
channel).

NumSamplesProcessed positive integer Number of samples processed
by the channel object since
the last reset, returned as a
positive integer.

• If obj is a ccsdsTMWaveformGenerator System object, the output structure has these fields,
consisting of physical layer information about the CCSDS TM waveform generator.

Field Value Description
ActualCodeRate positive scalar in range [0 1] Numeric value of the code

rate of the channel coding
scheme, retuned as a positive
scalar in the range [0, 1]. This
value is used to generate the
CCSDS TM waveform.

NumBitsPerSymbol positive integer Number of bits per modulated
symbol, returned as a positive
integer.

2 Functions

2-44

Field Value Description
SubcarrierFrequency positive scalar Subcarrier frequency,

returned as a positive scalar.
This field is applicable only
when Modulation property
of
ccsdsTMWaveformGenerato
r object is set to "PCM/PSK/
PM". For other cases, this
value is returned as null.

See Also
Functions
flushFilter

Objects
ccsdsTMWaveformGenerator | dvbs2WaveformGenerator | dvbs2xWaveformGenerator |
etsiRicianChannel

Introduced in R2021a

 info

2-45

flushFilter
Flush transmit filter

Syntax
out = flushFilter(obj)

Description
out = flushFilter(obj) passes zeros through the transmit filter in the input waveform
generator to flush the residual data samples that remain in the filter state. The function returns the
residual data samples.

You must call the input waveform generator System object (not only create the object) prior to using
the flushFilter object function. The number of zeros passed through the transmit filter depends
on the filter delay. This object function is required for the receiver simulations to recover all of the
bits in the last physical layer frame.

Examples

Get DVB-S2 Waveform Generator Information and Check Transmit Filter Delay

Get information from a dvbs2WaveformGenerator System object by using the info function. Then
retrieve the filter residual samples by using the flushFilter object function.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip', 'file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

numFrames = 1;

Create a Digital Video Broadcasting standard (DVB-S2) System object, and then specify its properties.

s2WaveGen = dvbs2WaveformGenerator;
s2WaveGen.NumInputStreams = 2;
s2WaveGen.MODCOD = [21 16];
s2WaveGen.DFL = 47008;
s2WaveGen.ISSYI = true;
s2WaveGen.SamplesPerSymbol = 2;
disp(s2WaveGen)

2 Functions

2-46

 dvbs2WaveformGenerator with properties:

 StreamFormat: "TS"
 NumInputStreams: 2
 FECFrame: "normal"
 MODCOD: [21 16]
 DFL: 47008
 ScalingMethod: "outer radius as 1"
 HasPilots: 0
 RolloffFactor: 0.3500
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 2
 ISSYI: true
 ISCRFormat: "short"

 Show all properties

Get the characteristic information about the DVB-S2 waveform generator.

info(s2WaveGen)

ans = struct with fields:
 ModulationScheme: {'16APSK' '8PSK'}
 LDPCCodeIdentifier: {'5/6' '8/9'}

Create the bit vector of input information bits, data, of concatenated TS user packets.

syncBits = [0 1 0 0 0 1 1 1]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
data = cell(1,s2WaveGen.NumInputStreams);
for i = 1:s2WaveGen.NumInputStreams
 numPkts = s2WaveGen.MinNumPackets(i)*numFrames;
 txRawPkts = randi([0 1],pktLen,numPkts);
 ISSY = randi([0 1],16,numPkts); % ISCRFormat is 'short' by default
 % 'short' implies the default length of ISSY as 2 bytes
 txPkts = [repmat(syncBits,1,numPkts);txRawPkts;ISSY]; % ISSY is appended at the end of UP
 data{i} = txPkts(:);
end

Generate a DVB-S2 time-domain waveform using the information bits.

txWaveform = [s2WaveGen(data)];

Check the filter residual data samples that remain in the filter delay.

flushFilter(s2WaveGen)

ans = 20×1 complex

 0.0153 + 0.4565i
 0.2483 + 0.5535i
 0.3527 + 0.3972i
 0.3541 - 0.0855i
 0.3505 - 0.4071i
 0.4182 - 0.1962i
 0.5068 + 0.0636i
 0.4856 - 0.1532i
 0.3523 - 0.4153i

 flushFilter

2-47

 0.1597 - 0.2263i
 ⋮

Recover Data Bits from Transport Stream DVB-S2 Transmission

Recover user packets (UPs) for multiple physical layer (PL) frames in a single transport stream
Digital Video Broadcasting Satellite Second Generation (DVB-S2) transmission.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip','file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of PL frames per stream. Create a DVB-S2 System object.

nFrames = 2;
s2WaveGen = dvbs2WaveformGenerator;

Create the bit vector of information bits, data, of concatenated TS UPs.

syncBits = [0 1 0 0 0 1 1 1]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
numPkts = s2WaveGen.MinNumPackets*nFrames;
txRawPkts = randi([0 1],pktLen,numPkts);
txPkts = [repmat(syncBits,1,numPkts); txRawPkts];
data = txPkts(:);

Generate the DVB-S2 time-domain waveform using the input information bits. Flush the transmit
filter to handle the filter delay and recover the complete last frame.

txWaveform = [s2WaveGen(data); flushFilter(s2WaveGen)];

Add additive white Gaussian noise (AWGN) to the generated waveform.

sps = s2WaveGen.SamplesPerSymbol;
EsNodB = 1;
snrdB = EsNodB - 10*log10(sps);
rxIn = awgn(txWaveform,snrdB,'measured');

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(...
 'RolloffFactor',s2WaveGen.RolloffFactor, ...
 'InputSamplesPerSymbol',sps,...
 'DecimationFactor',sps);
s = coeffs(rxFilter);
rxFilter.Gain = sum(s.Numerator);

2 Functions

2-48

Apply matched filtering and remove the filter delay.

filtOut = rxFilter(rxIn);
rxFrame = filtOut(rxFilter.FilterSpanInSymbols+1:end);

Recover UPs. Display the number of frames lost and the UP cyclic redundancy check (CRC) status.

[bits,FramesLost,pktCRCStat] = dvbs2BitRecover(rxFrame,10^(-EsNodB/10));
disp(FramesLost)

 0

disp(pktCRCStat)

 {20×1 logical}

Get DVB-S2X Waveform Generator Information and Check Transmit Filter Delay

Get information from a dvbs2xWaveformGenerator System object by using the info function.
Then retrieve the filter residual samples by using the flushFilter object function.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip','file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

numFrames = 2;

Create a Digital Video Broadcasting Satellite Second Generation extended (DVB-S2X) System object
and specify its properties. Use time slicing technique and variable coding and modulation
configuration mode.

s2xWaveGen = dvbs2xWaveformGenerator();
s2xWaveGen.HasTimeSlicing = true;
s2xWaveGen.NumInputStreams = 2;
s2xWaveGen.PLSDecimalCode = [135 145]; % QPSK 9/20 and 8PSK 25/36
s2xWaveGen.DFL = [18048 44656];
s2xWaveGen.PLScramblingIndex = [0 1];
disp(s2xWaveGen)

 dvbs2xWaveformGenerator with properties:

 StreamFormat: "TS"
 HasTimeSlicing: true
 NumInputStreams: 2
 PLSDecimalCode: [135 145]
 DFL: [18048 44656]

 flushFilter

2-49

 PLScramblingIndex: [0 1]
 RolloffFactor: 0.3500
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 4
 ISSYI: false

 Show all properties

Get the characteristic information about the DVB-S2X waveform generator.

info(s2xWaveGen)

ans = struct with fields:
 FECFrame: {'normal' 'normal'}
 ModulationScheme: {'QPSK' '8PSK'}
 LDPCCodeIdentifier: {'9/20' '25/36'}

Create the bit vector of input information bits, data, of concatenated TS user packets for each input
stream.

syncBits = [0 1 0 0 0 1 1 1]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
data = cell(1, s2xWaveGen.NumInputStreams);
for i = 1:s2xWaveGen.NumInputStreams
 numPkts = s2xWaveGen.MinNumPackets(i)*numFrames;
 txRawPkts = randi([0 1], pktLen, numPkts);
 txPkts = [repmat(syncBits, 1, numPkts); txRawPkts];
 data{i} = txPkts(:);
end

Generate a DVB-S2X time-domain waveform using the information bits.

txWaveform = s2xWaveGen(data);

Check the filter residual data samples that remain in the filter delay.

flushFilter(s2xWaveGen)

ans = 40×1 complex

 -0.2412 - 0.0143i
 -0.2619 - 0.0861i
 -0.2726 - 0.1337i
 -0.2511 - 0.1597i
 -0.1851 - 0.1680i
 -0.0780 - 0.1602i
 0.0448 - 0.1288i
 0.1598 - 0.0751i
 0.2482 - 0.0049i
 0.3026 + 0.0702i
 ⋮

2 Functions

2-50

Get CCSDS TM Waveform Generator Information and Check Transmit Filter Delay

Get information from a ccsdsTMWaveformGenerator System object by using the info function.
Then retrieve the filter residual samples by using the flushFilter object function.

Create a Consultative Committee for Space Data Systems (CCSDS) Telemetry (TM) System object.
Set the waveform type as synchronization and channel coding with low-density parity-check
(LDPC) channel coding. Display the properties.

tmWaveGen = ccsdsTMWaveformGenerator;
tmWaveGen.WaveformSource = "synchronization and channel coding";
tmWaveGen.ChannelCoding = "LDPC";
tmWaveGen.NumBitsInInformationBlock = 1024;
tmWaveGen.Modulation = "QPSK";
tmWaveGen.CodeRate = "1/2";
disp(tmWaveGen)

 ccsdsTMWaveformGenerator with properties:

 WaveformSource: "synchronization and channel coding"
 HasRandomizer: true
 HasASM: true
 PCMFormat: "NRZ-L"

 Channel coding properties:
 ChannelCoding: "LDPC"
 NumBitsInInformationBlock: 1024
 CodeRate: "1/2"
 IsLDPCOnSMTF: false

 Digital modulation and filter properties:
 Modulation: "QPSK"
 PulseShapingFilter: "root raised cosine"
 RolloffFactor: 0.3500
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 10

 Use get to show all properties

Specify the number of transfer frames.

numTF = 20;

Get the characteristic information about the CCSDS TM waveform generator.

info(tmWaveGen)

ans = struct with fields:
 ActualCodeRate: 0.5000
 NumBitsPerSymbol: 2
 SubcarrierFrequency: []

Generate the input bits for the CCSDS TM waveform generator, and then generate the waveform.

bits = randi([0 1], tmWaveGen.NumInputBits*numTF,1);
waveform = tmWaveGen(bits);

Check the filter residual data samples that remain in the filter delay.

 flushFilter

2-51

flushFilter(tmWaveGen)

ans = 100×1 complex

 -0.0772 - 0.0867i
 -0.0751 - 0.0859i
 -0.0673 - 0.0788i
 -0.0549 - 0.0654i
 -0.0388 - 0.0469i
 -0.0200 - 0.0250i
 0.0002 - 0.0012i
 0.0208 + 0.0227i
 0.0405 + 0.0453i
 0.0587 + 0.0653i
 ⋮

Input Arguments
obj — Waveform generator
dvbs2WaveformGenerator | dvbs2xWaveformGenerator | ccsdsTMWaveformGenerator

Waveform generator object, specified as a dvbs2WaveformGenerator,
dvbs2xWaveformGenerator, or ccsdsTMWaveformGenerator System object.

To enable the flushFilter object function when you specify obj as a
ccsdsTMWaveformGenerator System object, you must set these dependencies in the
ccsdsTMWaveformGenerator object.

• Set the WaveformSource property to "synchronization and channel coding".
• Set the ChannelCoding property to one of these values.

• "none"
• "RS"
• "turbo"
• "LDPC" — In this case, you must also set the IsLDPCOnSMTF property to 0 (false)
• "convolutional" — In this case, you must also set the ConvolutionalCodeRate property

to either "1/2" or "2/3"
• "concatenated" — In this case, you must also set the ConvolutionalCodeRate property to

either "1/2" or "2/3"
• Set the Modulation property to either "BPSK" or "QPSK".

Output Arguments
out — Residual data samples that remain in filter state
column vector

Residual data samples that remain in the filter state, returned as a column vector. The length of the
column vector is equal to the product of the SamplesPerSymbol and FilterSpanInSymbols
properties of the input object, obj.

2 Functions

2-52

When you specify obj as dvbs2WaveformGenerator or dvbs2xWaveformGenerator System
object and the NumInputStream property as a value greater than 1, the data fields generated from
different input streams are merged in a round-robin technique into a single stream. The residual
samples of the frame after the merging process are flushed out.
Data Types: double

See Also
Functions
info

Objects
ccsdsTMWaveformGenerator | dvbs2WaveformGenerator | dvbs2xWaveformGenerator

Introduced in R2021a

 flushFilter

2-53

satellite
Add satellites to satellite scenario

Syntax
satellite(scenario,tlefile)
satellite(scenario,semimajoraxis,eccentricity,inclination,RAAN,
argofperiapsis,trueanomaly)
satellite(scenario,positiontable)
satellite(scenario,positiontable,velocitytable)
satellite(scenario,positiontimeseries)
satellite(scenario,positiontimeseries,velocitytimeseries)
satellite(___ ,Name,Value)
sat = satellite(___)

Description
sat = satellite(scenario,tlefile) adds a Satellite object from TLE file to the satellite
scenario specified by scenario, specified as a string scalar or character vector. The yaw (z) axes of
the satellites point toward nadir, and the roll (x) axes of the satellites align with their respective
inertial velocity vectors.

satellite(scenario,semimajoraxis,eccentricity,inclination,RAAN,
argofperiapsis,trueanomaly) adds a Satellite object from Keplerian elements defined in the
Geocentric Celestial Reference Frame (GCRF) to the satellite scenario.

satellite(scenario,positiontable) adds a Satellite object from position data specified in
positiontable (timetable object) to the scenario. This function creates a Satellite with
OrbitPropagator="ephemeris".

satellite(scenario,positiontable,velocitytable) adds a Satellite object from position
data specified in positiontable (timetable object) and velocity data specified in
velocitytable (timetable object) to the scenario. This function creates a Satellite with
OrbitPropagator="ephemeris".

satellite(scenario,positiontimeseries) adds a Satellite object from position data
specified in positiontimeseries (timeseries object). This function creates a Satellite with
OrbitPropagator="ephemeris".

satellite(scenario,positiontimeseries,velocitytimeseries) adds a Satellite object
to the scenario from position (in meters) data specified in positiontimeseries (timeseries
object) and velocity (in meters/second) data specified in velocitytimeseries (timeseries
object). This function creates a Satellite with OrbitPropagator="ephemeris".

satellite(___ ,Name,Value) specifies options using one or more name-value arguments in
addition to any input argument combination from previous syntaxes. For example,
('Name','satellite1') specifies the name of the satellite as 'satellite1'. .

sat = satellite(___) returns a vector of handles to the added satellites. Specify any input
argument combination from previous syntaxes.

2 Functions

2-54

Examples

Add Four Satellites from Position Timetable and Visualize Their Trajectories

Add four satellites to the satellite scenario from a position timetable to a satellite scenario and
visualize their trajectories.

Create a default satellite scenario object.

sc = satelliteScenario;

Load a satellite ephemeris timetable, assuming the data is in the GCRF coordinate frame.

load("timetableSatelliteTrajectory.mat","positionTT");

Add the satellites to the scenario.

sat = satellite(sc,positionTT);

Visualize the trajectories of the satellites.

play(sc);

Add Four Satellites from Position and Velocity Timetable and Visualize Their Trajectories

Add four satellites to the satellite scenario from position and velocity timetables in the Earth
Centered Earth Fixed (ECEF) frame and visualize their trajectories.

Create a default satellite scenario object.

sc = satelliteScenario;

Load a satellite ephemeris timetable, assuming the data is in the ECEF coordinate frame.

load("timetableSatelliteTrajectory.mat","positionTT","velocityTT");

Add the satellites to the scenario.

sat = satellite(sc,positionTT,velocityTT,"CoordinateFrame","ecef")

Visualize the trajectories of the satellites.

play(sc);

Add Ground stations to Scenario and Visualize Access Intervals

Create satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020, 5, 1, 11, 36, 0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime, stopTime, sampleTime);
lat = [10];

 satellite

2-55

lon = [-30];
gs = groundStation(sc, lat, lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;
eccentricity = 0;
inclination = 10;
rightAscensionOfAscendingNode = 0;
argumentOfPeriapsis = 0;
trueAnomaly = 0;
sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
 rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly);

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat, gs);
intvls = accessIntervals(ac)

intvls=8×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 _____________ __________________ ______________ ____________________ ____________________ ________ __________ ________

 "Satellite 2" "Ground station 1" 1 01-May-2020 11:36:00 01-May-2020 12:04:00 1680 1 1
 "Satellite 2" "Ground station 1" 2 01-May-2020 14:20:00 01-May-2020 15:11:00 3060 1 2
 "Satellite 2" "Ground station 1" 3 01-May-2020 17:27:00 01-May-2020 18:18:00 3060 3 3
 "Satellite 2" "Ground station 1" 4 01-May-2020 20:34:00 01-May-2020 21:25:00 3060 4 4
 "Satellite 2" "Ground station 1" 5 01-May-2020 23:41:00 02-May-2020 00:32:00 3060 5 5
 "Satellite 2" "Ground station 1" 6 02-May-2020 02:50:00 02-May-2020 03:39:00 2940 6 6
 "Satellite 2" "Ground station 1" 7 02-May-2020 05:59:00 02-May-2020 06:47:00 2880 7 7
 "Satellite 2" "Ground station 1" 8 02-May-2020 09:06:00 02-May-2020 09:56:00 3000 8 9

Play the scenario to visualize the ground stations.

play(sc)

2 Functions

2-56

Add Satellites to Scenario Using Keplerian Elements

Create a satellite scenario with a start time of 02-June-2020 8:23:00 AM UTC, and the stop time set to
one day later. Set the simulation sample time to 60 seconds.

startTime = datetime(2020,6,02,8,23,0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add two satellites to the scenario using their Keplerian elements.

semiMajorAxis = [10000000; 15000000];
eccentricity = [0.01; 0.02];
inclination = [0; 10];
rightAscensionOfAscendingNode = [0; 15];

 satellite

2-57

argumentOfPeriapsis = [0; 30];
trueAnomaly = [0; 20];

sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
 rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly)

sat =
 1×2 Satellite array with properties:

 Name
 ID
 ConicalSensors
 Gimbals
 Transmitters
 Receivers
 Accesses
 GroundTrack
 Orbit
 OrbitPropagator
 MarkerColor
 MarkerSize
 ShowLabel
 LabelFontSize
 LabelFontColor

View the satellites in orbit and the ground tracks over one hour.

show(sat)
groundTrack(sat,'LeadTime',3600)

ans=1×2 object
 1×2 GroundTrack array with properties:

 LeadTime
 TrailTime
 LineWidth
 TrailLineColor
 LeadLineColor
 VisibilityMode

play(sc)

2 Functions

2-58

Input Arguments
scenario — Satellite scenario
satelliteScenario object

Satellite scenario, specified as a satelliteScenario object.

tlefile — Name of TLE file
character vector | string scalar

Name of a TLE file, specified as a character vector or a string scalar. The TLE file must exist in the
current directory, exist in a directory on the MATLAB path, or include a full or relative path to a file.

For more information on TLE files, see “Two Line Element (TLE) Files”.
Data Types: char | string

 satellite

2-59

semimajoraxis, eccentricity, inclination, RAAN, argofperiapsis, trueanomaly —
Keplerian elements defined in GCRF
comma-separated list of vectors

Keplerian elements defined in the GCRF, specified as a comma-separated list of vectors. The
Keplerian elements are:

• semimajoraxis – This vector defines the semimajor axis of the orbit of the satellite. Each value is
equal to half of the longest diameter of the orbit.

• eccentricity – This vector defines the shape of the orbit of the satellite.
• inclination – This vector defines the angle between the orbital plane and the xy-plane of the

GCRF for each satellite.
• RAAN (right ascension of ascending node) – This element defines the angle between the xy-plane of

the GCRF and the direction of the ascending node, as seen from the Earth's center of mass for
each satellite. The ascending node is the location where the orbit crosses the xy-plane of the
GCRF and goes above the plane.

• argofperiapsis (argument of periapsis) – This vector defines the angle between the direction of
the ascending node and the periapsis, as seen from the Earth's center of mass. Periapsis is the
location on the orbit that is closest to the Earth's center of mass for each satellite.

• trueanomaly – This vector defines the angle between the direction of the periapsis and the
current location of the satellite, as seen from the Earth's center of mass for each satellite.

For more information on Keplerian elements, see “Orbital Elements”.

positiontable — Position data
timetable | table

Position data in meters, specified as a timetable created using the timetable function.
positiontable has exactly one monotonically increasing column of rowTimes (datetime or
duration values) and one or more columns of variables, where each column contains an individual
satellite position over time.

If rowTimes values are of type duration, time values are measured relative to the current scenario
StartTime property. The timetable VariableNames are used by default if no names are provided as
an input. Satellite states are assumed to be in the GCRF unless a CoordinateFrame name-value
argument is provided. States are held constant in GCRF for scenario timesteps outside of the time
range of positiontable.
Data Types: table | timetable

velocitytable — Velocity data
timetable | table

Velocity data in meters/second, specified as a timetable created using the timetable function.
velocitytable has exactly one monotonically increasing column of rowTimes (datetime or
duration values) and one or more columns of variables, where each column contains an individual
satellite position over time.

If rowTimes values are of type duration, time values are measured relative to the current scenario
StartTime property. The timetable VariableNames are used by default if no names are provided as
an input. Satellite states are assumed to be in the GCRF unless a CoordinateFrame name-value
argument is provided. States are held constant in GCRF for scenario timesteps outside of the time
range of velocitytable.

2 Functions

2-60

Data Types: table | timetable

positiontimeseries — Position data
timeseries object | tscollection object

Position data in meters, specified as a timeseries object or a tscollection object.

• If the Data property of the timeseries or tscollection object has two dimensions, one
dimension must equal 3, and the other dimension must align with the orientation of the time
vector.

• If the Data property of the timeseries or tscollection has three dimensions, one dimension
must equal 3, either the first or the last dimension must align with the orientation of the time
vector, and the remaining dimension defines the number of satellites in the ephemeris.

When timeseries.TimeInfo.StartDate is empty, time values are measured relative to the
current scenario StartTime property. The timeseries Name property (if defined) is used by default
if no names are provided as inputs. Satellite states are assumed to be in the GCRF unless a
CoordinateFrame name-value pair is provided. States are held constant in GCRF for scenario
timesteps outside of the time range of positiontimeseries.

Data Types: timeseries | tscollection

velocitytimeseries — Velocity data
timeseries object | tscollection object

Velocity data in meters/second, specified as a timeseries object or a tscollection object.

• If the Data property of the timeseries or tscollection object has two dimensions, one
dimension must equal 3, and the other dimension must align with the orientation of the time
vector.

• If the Data property of the timeseries or tscollection has three dimensions, one dimension
must equal 3, either the first or the last dimension must align with the orientation of the time
vector, and the remaining dimension defines the number of satellites in the ephemeris.

When timeseries.TimeInfo.StartDate is empty, time values are measured relative to the
current scenario StartTime property. The timeseries Name property (if defined) is used by default
if no names are provided as inputs. Satellite states are assumed to be in the GCRF unless a
CoordinateFrame name-value pair is provided. States are held constant in GCRF for scenario
timesteps outside of the time range of velocitytimeseries.

Data Types: timeseries | tscollection

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Name','MySatellite' sets the satellite name to 'MySatellite'.

Viewer — Satellite scenario viewer
(default) | row vector of all viewer objects | row vector of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a row vector of satelliteScenarioViewer objects.

 satellite

2-61

Data Types: char | string

Name — satellite name
"satellite idx" (default) | string scalar | string vector | character vector | cell array of character
vectors

You can set this property only when calling satellite. After you call satellite, this property is read-only.

satellite name, specified as a comma-separated pair consisting of 'Name' and a string scalar, string
vector, character vector or a cell array of character vectors.

• If only one satellite is added, specify Name as a string scalar or a character vector.
• If multiple satellites are added, specify Name as a string vector or a cell array of character vectors.

The number of elements in the string vector or cell array must be equal to the number of satellites
being added.

In the default value, idx is the count of the satellite added by the satellite object function. If
another satellite of the same name exists, a suffix _idx2 is added, where idx2 is an integer that is
incremented by 1 starting from 1 until the name duplication is resolved.
Data Types: char | string

OrbitPropagator — Name of orbit propagator
"sgp4" (default) | "two-body-keplerian" | "sdp4" | "ephemeris"

You can set this property when calling satellite only. After you call satellite, this property is
read-only.

Name of the orbit propagator used for propagating satellite position and velocity, specified as the
comma-separated pair consisting of 'OrbitPropagator' and either "two-body-keplerian",
"sgp4", "sdp4", or "ephemeris".

Dependencies

OrbitPropagator is not available for ephemeris data inputs (timetable or timeseries). In these
cases, satellite ignores this name-value pair.
Data Types: string | char

CoordinateFrame — Satellite state coordinate frame
"inertial" (default) | "ecef" | "geographic"

Satellite state coordinate frame, specified as the comma-separated pair consisting of
'CoordinateFrame' and one of these values:

• "inertial" — For timeseries or timetable data, specifying this value accepts the position
and velocity in the GCRF frame.

• "ecef" — For timeseries or timetable data, specifying this value accepts the position and
velocity in the ECEF frame.

• "geographic" — For timeseries or timetable data, specifying this value accepts the position
[lat, lon, altitude], where lat and lon are latitude and longitude in degrees, and altitude is the
height above the World Geodetic System 84 (WGS 84) ellipsoid in meters.

Velocity is in the local NED frame.

2 Functions

2-62

Dependencies

To enable this name value argument, ephemeris data inputs (timetable or timeseries).
Data Types: string | char

Output Arguments
sat — Satellite in the scenario
Satellite object

Satellite in the scenario, returned as a Satellite object belonging to the satellite scenario specified
by scenario.

You can modify the Satellite object by changing its property values.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | hide | orbitalElements | play | receiver | show | transmitter

Topics
“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Constellation Access to a Ground Station”
“Comparison of Orbit Propagators”
“Modeling Satellite Constellations using Ephemeris Data”
“Estimate GNSS Receiver Position with Simulated Satellite Constellations”
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 satellite

2-63

conicalSensor
Package: satelliteScenario

Add conical sensor to satellite scenario

Syntax
conicalSensor(parent)
conicalSensor(parent,Name,Value)
S = conicalSensor(___)

Description
conicalSensor(parent) adds a default ConicalSensor object to parent which can be a
satellite, groundStation or gimbal.

conicalSensor(parent,Name,Value) specifies options using one or more name-value arguments.
For example, 'MaxViewAngle',90 specifies a field of view angle of 90 degrees.

S = conicalSensor(___) returns a handle to the added conical sensor. Specify any input
argument combination from previous syntaxes.

Input Arguments
parent — Element of scenario to which conicalSensor is added
Satellite object | GroundStation object | Gimbal object

Element of scenario to which the conicalSensor is added, specified as a Satellite,
GroundStation, or Gimbal object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'MountingAngle',[20; 35; 10] sets the yaw, pitch, and roll angles of the conical
sensor to 20, 35, and 10 degrees, respectively.

Name — conicalSensor name
"conicalSensor idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling conicalSensor. After you call conicalSensor, this property
is read-only.

conicalSensor name, specified as a comma-separated pair consisting of 'Name' and a string scalar,
string vector, character vector or a cell array of character vectors.

• If only one conicalSensor is added, specify Name as a string scalar or a character vector.

2 Functions

2-64

• If multiple conicalSensors are added, specify Name as a string vector or a cell array of character
vectors. The number of elements in the string vector or cell array must be equal to the number of
satellites being added.

In the default value, idx is the count of the conicalSensor added by the conicalSensor object
function. If another conicalSensor of the same name exists, a suffix _idx2 is added, where idx2 is an
integer that is incremented by 1 starting from 1 until the name duplication is resolved.
Data Types: char | string

MountingLocation — Mounting location with respect to parent
[0; 0; 0] (default) | three-element row vector of positive numbers

Mounting location with respect to the parent object, specified as a three-element row vector of
positive numbers in meters. The position vector is specified in the body frame of the input parent.

MountingAngles — Mounting orientation with respect to parent object
[0; 0; 0] (default) | three-element row vector of positive numbers

Mounting orientation with respect to parent object, specified as a three-element row vector of
positive numbers in degrees. The elements of the vector correspond to yaw, pitch, and roll in that
order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.
Example: [0; 30; 60]

MaxViewAngle — Field of view angle
30 (default) | scalar in the range [0, 180]

Field of view angle, specified as a scalar in the range [0, 180]. Units are in degrees.

Output Arguments
S — Conical sensor
ConicalSensor object

Conical sensor attached to parent, returned as a ConicalSensor object.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | gimbal | groundStation | hide | play | satellite | show

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 conicalSensor

2-65

satelliteScenarioViewer
Create viewer for satellite scenario

Syntax
satelliteScenarioViewer(scenario)
satelliteScenarioViewer(scenario,Name,Value)
v = satelliteScenarioViewer(scenario)

Description
satelliteScenarioViewer(scenario) creates a 3-D or 2-D satellite scenario viewer for the
specified satellite scenario.

Note

• Satellite Scenario Viewer is a 3-D map display and requires hardware graphics support for
WebGL™.

satelliteScenarioViewer(scenario,Name,Value) creates a new viewer using one or more
name-value arguments. For example, 'Basemap', 'topographic' bases the scenario on
Topographic imagery provided by Esri®.

v = satelliteScenarioViewer(scenario) returns the handle to the satellite scenario viewer.

Input Arguments
scenario — Satellite scenario
satelliteScenario object

Satellite scenario, specified as a satelliteScenario object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Basemap','topographic' bases the scenario on Topographic imagery provided by Esri.

Name — Name of viewer window
'Satellite Scenario Viewer' (default) | string scalar | character vector

Name of the viewer window, specified as a comma-separated pair consisting of 'Name' and either a
string scalar or a character vector.
Data Types: char | string

2 Functions

2-66

Position — Viewer window position
center of the screen (default) | row vector of four elements

Size and location of the satellite scenario window in pixels, specified as a row vector of four elements.
The elements of the vector are [left bottom width height]. In the default case, width and height are
800 and 600 pixels, respectively.

Basemap — Map on which scenario is visualized
'satellite' (default) | 'topographic' | 'streets' | 'streets-light' | 'streets-dark' |
'darkwater' | 'grayland' | 'bluegreen' | 'colorterrain' | 'grayterrain' | 'landcover'

Map on which scenario is visualized, specified as a comma-separated pair consisting of 'Basemap'
and one of the values specified in this table:

'satellite'

Full global basemap
composed of high-
resolution satellite
imagery.

Hosted by Esri.

'streets'

General-purpose road
map that emphasizes
accurate, legible styling
of roads and transit
networks.

Hosted by Esri.

'topographic'

General-purpose map
with styling to depict
topographic features.

Hosted by Esri.

'streets-dark'

Map designed to
provide geographic
context while
highlighting user data
on a dark background.

Hosted by Esri.

 satelliteScenarioViewer

2-67

'landcover'

Map that combines
satellite-derived land
cover data, shaded
relief, and ocean-bottom
relief. The light, natural
palette is suitable for
thematic and reference
maps.

Created using Natural
Earth.

'streets-light'

Map designed to
provide geographic
context while
highlighting user data
on a light background.

Hosted by Esri.

'colorterrain'

Shaded relief map
blended with a land
cover palette. Humid
lowlands are green and
arid lowlands are
brown.

Created using Natural
Earth.

'grayterrain'

Terrain map in shades
of gray. Shaded relief
emphasizes both high
mountains and micro-
terrain found in
lowlands.

Created using Natural
Earth.

'bluegreen'

Two-tone, land-ocean
map with light green
land areas and light
blue water areas.

Created using Natural
Earth.

'grayland'

Two-tone, land-ocean
map with gray land
areas and white water
areas.

Created using Natural
Earth.

2 Functions

2-68

'darkwater'

Two-tone, land-ocean
map with light gray land
areas and dark gray
water areas. This
basemap is installed
with MATLAB.

Created using Natural
Earth.

All basemaps except 'darkwater' require Internet access. The 'darkwater' basemap is included
with MATLAB and Satellite Communications Toolbox.

If you do not have consistent access to the Internet, you can download the basemaps created using
Natural Earth onto your local system by using the Add-On Explorer. The basemaps hosted by Esri are
not available for download.

Alignment of boundaries and region labels are a presentation of the feature provided by the data
vendors and do not imply endorsement by The MathWorks®.
Data Types: char | string

Dimension — Dimension of viewer
'3-D' (default) | '2-D'

Dimension of the viewer, specified as a comma-separated pair consisting of 'Dimension' and either
'3-D' or '2-D'.
Data Types: char | string

PlaybackSpeedMultiplier — Speed of animation
50 (default) | positive scalar

Speed of the animation for the input scenario used by the play function, specified as a comma-
separated pair consisting of 'PlaybackSpeedMultiplier' and a positive scalar.

CameraReferenceFrame — Reference frame of camera
'ECEF' (default) | 'Inertial'

Reference frame of the camera, specified as a comma-separated pair consisting of
'CameraReferenceFrame' and one of these values:

• 'ECEF' — Earth-Centered Earth-Fixed camera.
• 'Inertial' — Inertially fixed camera.

When you specify 'Inertial', the globe rotates with respect to the camera. When you specify
'ECEF', the camera rotates with the globe.

 satelliteScenarioViewer

2-69

Dependencies

To enable this name-value argument, set to Dimension to '3-D'.

CurrentTime — Current simulation time
StartTime of satelliteScenario (default) | datetime array

Current simulation time of the viewer, specified as a datetime array. This value changes over time
when the animation is playing.
Data Types: datetime

Output Arguments
v — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, returned as a satelliteScenarioViewer object.

To specify, query, or visualize satellite scenario viewer details, use these functions:

campos Set or query camera position.
camheight Set or query camera height.
camheading Set or query camera heading angle.
camroll Set or query camera roll angle.
campitch Set or query camera pitch angle.
camtarget Target an object with the camera.
hideAll Hide all visualizations and animations in the

Satellite Viewer.
showAll Show all visualizations and animations in the

Satellite Viewer.

Tips
• To pan the viewer window without rotation, use Shift + left click + drag.

See Also
Functions
access | groundStation | hide | play | satellite | show

Topics
“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Constellation Access to a Ground Station”
“Comparison of Orbit Propagators”
“Modeling Satellite Constellations using Ephemeris Data”
“Estimate GNSS Receiver Position with Simulated Satellite Constellations”
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2 Functions

2-70

Introduced in R2021a

 satelliteScenarioViewer

2-71

play
Play satellite scenario simulation results on viewer

Syntax
play(scenario)
play(v)
play(scenario,Name,Value)

Description
play(scenario) plays simulation results of the satellite scenario, scenario, from its start time
(StartTime property) to its stop time (StopTime property) using a step size specified by the
SampleTime property. The function plays the results in a satellite scenario viewer.

play(v) plays the satellite scenario simulation on the Satellite Scenario Viewer specified by v.

play(scenario,Name,Value) specifies additional options using one or more name-value
arguments. For example, you can set the speed of animation to 40 times the real time speed, using
'PlaybackSpeedMultiplier',40.

Examples

Add Satellites to Scenario Using Keplerian Elements

Create a satellite scenario with a start time of 02-June-2020 8:23:00 AM UTC, and the stop time set to
one day later. Set the simulation sample time to 60 seconds.

startTime = datetime(2020,6,02,8,23,0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add two satellites to the scenario using their Keplerian elements.

semiMajorAxis = [10000000; 15000000];
eccentricity = [0.01; 0.02];
inclination = [0; 10];
rightAscensionOfAscendingNode = [0; 15];
argumentOfPeriapsis = [0; 30];
trueAnomaly = [0; 20];

sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
 rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly)

sat =
 1×2 Satellite array with properties:

 Name
 ID
 ConicalSensors

2 Functions

2-72

 Gimbals
 Transmitters
 Receivers
 Accesses
 GroundTrack
 Orbit
 OrbitPropagator
 MarkerColor
 MarkerSize
 ShowLabel
 LabelFontSize
 LabelFontColor

View the satellites in orbit and the ground tracks over one hour.

show(sat)
groundTrack(sat,'LeadTime',3600)

ans=1×2 object
 1×2 GroundTrack array with properties:

 LeadTime
 TrailTime
 LineWidth
 TrailLineColor
 LeadLineColor
 VisibilityMode

play(sc)

 play

2-73

Input Arguments
scenario — Satellite scenario
satelliteScenario object

Satellite scenario, specified as a satelliteScenario object.

v — Viewer
scalar | vector

Viewer, specified as a scalar or vector of satelliteScenarioViewer objects.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'PlaybackSpeedMultiplier',30 plays the animation 30 times faster than real time.

2 Functions

2-74

Viewer — Viewer on which to play simulation
all viewers associated with scenario (default) | satelliteScenarioViewer object

Viewer on which to play the simulation, specified as a satelliteScenarioViewer object.

PlaybackSpeedMultiplier — Speed of animation
50 (default) | positive scalar

Speed of animation relative to real time, specified as a positive scalar.

See Also
Objects
satelliteScenario

Functions
access | groundStation | hide | satellite | show

Topics
“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Constellation Access to a Ground Station”
“Comparison of Orbit Propagators”
“Modeling Satellite Constellations using Ephemeris Data”
“Estimate GNSS Receiver Position with Simulated Satellite Constellations”
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 play

2-75

pointAt
Package: satelliteScenario

Target at which entity must be pointed

Syntax
pointAt(sat,coordinates)
pointAt(sat,target)
pointAt(sat,'nadir')

pointAt(gim,'none')
pointAt(gim,coordinates)
pointAt(gim,target)
pointAt(gim,'nadir')

Description
Satellite Object

pointAt(sat,coordinates) sets the attitude of the satellite sat such that its yaw (body z axis)
tracks the geographical coordinates [latitude; longitude; altitude] specified by coordinates. The
function constantly adjusts the attitude of the satellite so that its yaw (body z) axis points at the
desired target. Its roll (body x) axis is aligned with the inertial velocity vector by minimizing the angle
between them (exact alignment can be geometrically impossible).

pointAt(sat,target) sets the attitude of the satellite sat such that its yaw axis tracks the
specified target.The input target can be another satellite or ground station.

pointAt(sat,'nadir') sets the attitude of the satellite sat such that its yaw axis points in the
nadir direction.

Gimbal Object

pointAt(gim,'none') sets the steering angles (gimbal azimuth and gimbal elevation) of the
gimbal gim to zero.

pointAt(gim,coordinates) steers gim independent of the parent such that its body z- axis tracks
the geographical coordinates [latitude; longitude; altitude] specified by coordinates.

The desired orientation is achieved by rotating the gimbal about its body z-axis (gimbal azimuth) and
secondly rotating the gimbal about its body y-axis (gimbal elevation). The function continuously
steers the gimbal for the duration of the simulation so that the gimbal points at the desired target.

pointAt(gim,target) steers gim such that its body z-axis tracks the specifiedtarget. target
can be another satellite or ground station.

pointAt(gim,'nadir') steers gim such that its body z-axis points in the nadir direction of the
parent, namely, the parent's latitude, longitude, and 0 m altitude.

2 Functions

2-76

Input Arguments
sat — Satellite
Satellite object

Satellite, specified as a Satellite object.

gim — Gimbal
Gimbal object

Gimbal, specified as a Gimbal object.

coordinates — Geographical coordinates of the satellite target
three-element row vector

Geographical coordinates of the satellite or gimbals' target, specified as a three-element row vector.
The latitude and longitude are specified in degrees, and the altitude is specified as the height above
the surface of the Earth in meters.

target — Target
Satellite object | GroundStation object

Target at which input sat or gim is pointed, specified as a Satellite or GroundStation object.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | conicalSensor | groundStation | hide | play | receiver | show | transmitter

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 pointAt

2-77

camroll
Package: satelliteScenario

Set or get roll angle of camera for satellite scenario viewer

Syntax
camroll(viewer,roll)
outRoll = camroll(viewer, ___)

Description
camroll(viewer,roll) sets the roll angle of the camera for the satellite scenario viewer. Setting
the roll angle rotates the camera around its x-axis.

outRoll = camroll(viewer, ___) returns the roll angle of the camera. If the second input is
roll, then the function sets the output equal to the input roll.

Input Arguments
viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.1

roll — Roll angle of camera
scalar in the range [–360, 360]

Roll angle of the camera, specified as a scalar in the range [–360, 360] degrees.

Tips
• When the pitch angle is near –90 (the default value) or 90 degrees, the camera loses one

rotational degree of freedom. As a result, when you change the roll angle, the heading angle might
change instead. This phenomenon is called gimbal lock. To avoid the effects of gimbal lock, call
the camheading function instead of the camroll function.

1. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks®.

2 Functions

2-78

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
camheading | camheight | campitch | campos | camtarget | hide | hideAll | play | show

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 camroll

2-79

campitch
Package: satelliteScenario

Set or get pitch angle of camera for satellite scenario viewer

Syntax
campitch(viewer,pitch)
outPitch = campitch(viewer, ___)

Description
campitch(viewer,pitch) sets the pitch angle of the camera for the specified satellite scenario
viewer. Setting the pitch angle tilts the camera up or down as shown in this figure..

outPitch = campitch(viewer, ___) returns the pitch angle of the camera. If the second input is
pitch, then the function sets the output equal to the input pitch.

Input Arguments
viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.2

pitch — Pitch angle of camera
scalar the in the range [–90, 90]

Pitch angle of the camera, specified as a scalar the in the range [–90, 90] degrees. By default, the
pitch angle is –90 degrees, which means that camera points directly toward the surface of the globe.

Tips
• When the pitch angle is near –90 (the default value) or 90 degrees, the camera loses one

rotational degree of freedom. As a result, when you change the roll angle, the heading angle might
change instead. This phenomenon is called gimbal lock. To avoid the effects of gimbal lock, call
the camheading function instead of the camroll function.

2. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

2 Functions

2-80

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
camheading | campitch | campos | camroll | camtarget | hide | hideAll | play | show

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 campitch

2-81

campos
Package: satelliteScenario

Set or get position of camera for satellite scenario viewer

Syntax
campos(viewer,lat,lon)
campos(viewer,lat,lon,height)
campos(viewer)
[latOut,lonOut,heightOut] = campos(___)

Description
campos(viewer,lat,lon) sets the latitude and longitude of the camera for the specified satellite
scenario viewer.

campos(viewer,lat,lon,height) sets the latitude, longitude, and ellipsoidal height of the
camera. If you want to set only the height of the camera, use the camheight function instead.

campos(viewer) displays the latitude, longitude, and ellipsoidal height of the camera as a three-
element vector.

[latOut,lonOut,heightOut] = campos(___) sets the position and then returns the latitude,
longitude, and height of the camera. Specify any input argument combinations from previous
syntaxes.

Input Arguments
viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.3

lat — Geodetic latitude of camera
0 (default) | scalar in the range [-90, 90].

Geodetic latitude of the camera, specified as a scalar in the range [–90, 90] degrees.

lon — Geodetic longitude of camera
0 (default) | scalar in the range [-360, 360].

Geodetic longitude of the camera, specified as a scalar in the range [–360, 360].

height — Ellipsoidal height of camera
15000000 (default) | numeric scalar

3. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

2 Functions

2-82

Ellipsoidal height of the camera, specified as a numeric scalar in meters. Satellite scenario viewer
objects use the WGS84 reference ellipsoid.

If you specify the height so that the camera is level with or below the surface of the Earth, then the
campos function sets the height to a value one meter above the surface.

Output Arguments
latOut — Geodetic latitude of camera
numeric scalar

Geodetic latitude of the camera, returned as a numeric scalar in degrees.

lonOut — Geodetic longitude of camera
numeric scalar

Geodetic longitude of the camera, returned as a numeric scalar in degrees.

heightOut — Ellipsoidal height of camera
numeric scalar

Ellipsoidal height of the camera, returned as a numeric scalar in meters. Satellite scenario viewer
objects use the WGS84 reference ellipsoid. For more information about ellipsoidal height, see
“Geodetic Coordinates”.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
camheading | camheight | campitch | camroll | camtarget | hide | hideAll | play | show

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 campos

2-83

camheading
Package: satelliteScenario

Set or get heading angle of camera for satellite scenario satellite scenario viewer

Syntax
camheading(viewer,heading)
outHeading = camheading(viewer, ___)

Description
camheading(viewer,heading) sets the heading angle of the camera for the specified satellite
scenario viewer. Setting the heading angle shifts the camera left or right about its z - axis.

outHeading = camheading(viewer, ___) returns the heading angle of the camera. If the second
input is heading, then the function sets the output equal to the input pitch.

Input Arguments
viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.4

heading — Heading angle of camera
360 (default) | scalar in the range [–360, 360]

Heading angle of the camera, specified as a scalar value in the range [–360, 360] degrees.

Tips
• When the pitch angle is near –90 (the default value) or 90 degrees, the camera loses one

rotational degree of freedom. As a result, when you change the roll angle, the heading angle might
change instead. This phenomenon is called gimbal lock. To avoid the effects of gimbal lock, call
the camheading function instead of the camroll function.

4. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

2 Functions

2-84

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
camheading | camheight | campitch | campos | camroll | camtarget | hide | hideAll | play |
show

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 camheading

2-85

camheight
Package: satelliteScenario

Set or get height of camera for satellite scenario viewer

Syntax
camheight(viewer,height)
heightOut = camheight(viewer, ___)

Description
camheight(viewer,height) sets the ellipsoidal height of the camera for the specified satellite
scenario viewer.

heightOut = camheight(viewer, ___) returns the ellipsoidal height of the camera. If the
second input is height, then the function sets the output equal to the input height.

Input Arguments
viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.5

height — Ellipsoidal height of camera
15000000 (default) | numeric scalar

Ellipsoidal height of the camera, specified as a numeric scalar in meters. Satellite scenario viewer
objects use the WGS84 reference ellipsoid. For more information about ellipsoidal height, see
“Geodetic Coordinates”.

If you specify the height so that the camera is level with or below the surface of the Earth, then the
camheight function sets the height to a value one meter above the surface.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
camheading | campitch | campos | camroll | camtarget | hide | hideAll | play | show

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”

5. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

2 Functions

2-86

“Satellite Scenario Basics”

Introduced in R2021a

 camheight

2-87

camtarget
Package: satelliteScenario

Set camera target for satellite scenario viewer

Syntax
camtarget(viewer,target)

Description
camtarget(viewer,target) focuses the camera on the input satellite or ground station. The
camera follows the object and can be unlocked by calling camtarget on another satellite or ground
station or by double-clicking anywhere in the map.

Input Arguments
viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.6

target — Target of camera
Satellite object | GroundStation object

Target of the camera, specified as a scalar Satellite or GroundStation object.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
camheading | camheight | campitch | campos | camroll | hide | hideAll | play | show

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

6. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

2 Functions

2-88

hideAll
Package: satelliteScenario

Hide all graphics in satellite scenario viewer

Syntax
hideAll(viewer)

Description
hideAll(viewer) hides all graphics in the specified satellite scenario viewer.

Input Arguments
viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.7

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | camheading | camheight | campitch | campos | camroll | camtarget |
conicalSensor | groundStation | hide | play | show | showAll

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”
“Comparison of Orbit Propagators”

Introduced in R2021a

7. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

 hideAll

2-89

showAll
Package: satelliteScenario

Show all graphics in viewer

Syntax
showAll(viewer)

Description
showAll(viewer) shows all graphics in the specified satellite scenario viewer.

Input Arguments
viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.8

See Also
Objects
access | conicalSensor | groundStation | satelliteScenario |
satelliteScenarioViewer

Functions
camheading | camheight | campitch | campos | camroll | camtarget | hide | play | show

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”
“Comparison of Orbit Propagators”

Introduced in R2021a

8. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

2 Functions

2-90

accessPercentage
Package: satelliteScenario

Percentage of time when access exists between first and last node defining access analysis

Syntax
ap = accessPercentage(ac)

Description
ap = accessPercentage(ac) returns the percentages of time from start time to stop time of the
satellite scenario when access exists between the first and last node of each access object in the input
vector.

Input Arguments
ac — Access analysis
row vector of Access objects

Access analysis, specified as a row vector of a Access objects.

Outputs Arguments
ap — Access percentage
row vector of nonnegative numbers

Access percentage, returned as a row vector of nonnegative numbers.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
conicalSensor | groundStation | hide | play | receiver | show | transmitter

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 accessPercentage

2-91

linkPercentage
Package: satelliteScenario

Percentage of time when link between first and last node in link analysis is closed

Syntax
lp = linkPercentage(lnk)

Description
lp = linkPercentage(lnk) returns the percentages of time from start time to stop time of the
satellite scenario when link between the first and last node is closed.

Input Arguments
lnk — Link analysis
Link object scalar

Link analysis object, specified as a Link object scalar.

Outputs Arguments
lp — Link percentage
vector of positive numbers

Link percentage, returned as a vector of positive numbers.

See Also
Objects
Link | satelliteScenario | satelliteScenarioViewer

Functions
ebno | groundStation | linkIntervals | linkStatus | play | show

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-92

linkStatus
Package: satelliteScenario

Status of link closure between first and last node

Syntax
s = linkStatus(lnk)
s = linkStatus(lnk,timeIn)
[s,timeOut] = linkStatus(___)

Description
s = linkStatus(lnk) returns the link closure status history between the first and last node in the
input Link object.

s = linkStatus(lnk,timeIn) returns the link closure status at the specified datetime in timeIn.

[s,timeOut] = linkStatus(___) returns the link closure status and the corresponding times in
Universal Time Coordinated (UTC).

Input Arguments
lnk — Link analysis
Link object scalar

Link analysis object, specified as a Link object scalar.

timeIn — Time at which output is calculated
scalar

Time at which the output is calculated, specified as a scalar. If you do not specify a time zone, then
the time zone is assumed to be UTC.

Outputs Arguments
s — Link closure status
scalar or row vector of logical values

Link closure status, returned as a row vector of logical values. If timeIn is specified, s is a row
vector, otherwise, the output is a scalar. The status at a given instant is 1 (true) if the link between
first and last node is closed. The link between the first and last node is closed when the link between
each individual pair of intermediate adjacent nodes in the Sequence property of the link is closed.

• For a given pair, the link is considered to be closed when both nodes belong to the same satellite
or ground station.

• Otherwise, the link between the pair is closed if the directionality is from a transmitter to a
receiver and the energy per bit to noise power spectral density ratio (Eb/No) at the receiver is
greater than its RequiredEbNo.

 linkStatus

2-93

• Additionally, if a given node is attached to a ground station directly or via a gimbal, the elevation
angle of the adjacent node with respect to the ground station must be greater than or equal to its
MinElevationAngle.

timeOut — Time samples of output link status
scalar | vector

Time samples of output link status, returned as a scalar or a vector. If time history of link status is
returned, timeOut is a row vector.

See Also
Objects
Link | groundStation | satelliteScenario | satelliteScenarioViewer

Functions
ebno | linkIntervals | linkPercentage | play | show

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-94

linkIntervals
Package: satelliteScenario

Intervals during which link is closed

Syntax
int = linkIntervals(lnk)

Description
int = linkIntervals(lnk) returns a table of intervals during which the link between the first
node and last node in each link object input vector is closed.

Input Arguments
lnk — Link analysis
Link object scalar

Link analysis object, specified as a Link object scalar.

Outputs Arguments
int — Intervals during which link is closed
table

Intervals during which the link is closed, returned as a table.

Each row of the table denotes a specific interval, and the columns of the table are named Source,
Target, IntervalNumber, StartTime, EndTime, Duration (in seconds), StartOrbit, and
EndOrbit. Source and Target are the names of the first and last node, respectively, that define the
link analysis.

• If Source is directly or indirectly attached to a satellite, then StartOrbit and EndOrbit
correspond to the satellite associated with Source.

• If Target is directly or indirectly attached to a satellite, then StartOrbit and EndOrbit
correspond to the satellite associated with the Target. Otherwise, StartOrbit and EndOrbit
are NaN because they are associated with ground stations.

See Also
Objects
Link | groundStation | satelliteScenario | satelliteScenarioViewer

Functions
ebno | linkPercentage | linkStatus | play | show

Topics
“Model, Visualize, and Analyze Satellite Scenario”

 linkIntervals

2-95

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-96

aer
Package: satelliteScenario

Calculate azimuth angle, elevation angle, and range in NED frame from another satellite or ground
station

Syntax
az = aer(objIn,target)
[az,el] = aer(objIn,target)
[az,el,range] = aer(objIn,target)
[az,el,range,timeOut] = aer(objIn,target)
[___] = aer(objIn,target,timeIn)

Description
az = aer(objIn,target) returns the history of azimuth angles, between satellite or ground
station objIn and another satellite or ground station target belonging to a given
satelliteScenario object.

[az,el] = aer(objIn,target) returns the history of elevation angles, el, between satellite or
ground station objIn and another satellite or ground station target.

[az,el,range] = aer(objIn,target) returns the history of the range of target with respect
to objIn.

[az,el,range,timeOut] = aer(objIn,target) returns the corresponding time in timeOut.

[___] = aer(objIn,target,timeIn) returns the outputs at the specified datetime timeIn.
Specify any output argument combinations from previous syntaxes.

Input Arguments
objIn — First scenario component
Satellite object | GroundStation object

First scenario component, specified as a Satellite or GroundStation object.

target — Second scenario component
Satellite object | GroundStation object

Second scenario component, specified as a Satellite or GroundStation object.

timeIn — Time at which output is calculated
scalar | vector | matrix | N-D array

Time at which output is calculated, returned as a scalar, vector, matrix, or N-D array. If no time zone
is specified in timeIn, the time zone is assumed to be UTC.

 aer

2-97

Output Arguments
az — Azimuth angles
scalar | vector

Azimuth angles of target in the local azimuth, elevation and range (AER) system, returned as a scalar
or vector. Azimuths are measured clockwise from North. Values are specified in degrees in the
interval [0, 360). The vector elements correspond to the time samples from the satellite scenario
StartTime to StopTime properties, as specified by the SampleTime property. The azimuth angle is
defined in the North-East-Down (NED) frame of (and centered at) objIn such that 0 degrees is
North, 90 degrees is East, 180 degrees is South, and 270 degrees is West.

el — Elevation angles
scalar | vector

Elevation angles of target in the local AER system, returned as a scalar or vector. Elevations are
measured with respect to a plane that is perpendicular to the normal of the surface of the earth. If
objIn is on the surface of the Earth, then the plane is tangent to the Earth.

Values are specified in degrees in the closed interval [0 180]. The vector elements correspond to the
time samples from the satellite scenario StartTime to StopTime properties, as specified by the
SampleTime property. The elevation angle is defined in the NED frame of (and centered at) objIn
such that 0 deg implies target is on the North East (NE) plane, 90 degrees implies target is
directly above objIn, and -90 degrees implies target is directly below objIn.

range — Distances from local origin
scalar | vector

Distances from the local origin in meters, returned as a scalar or vector.

timeOut — Time samples between start and stop time of scenario
scalar | vector

Time samples corresponding to az, el, and range, returned as a scalar or vector.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | conicalSensor | groundStation | hide | play | receiver | show | transmitter

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-98

accessIntervals
Package: satelliteScenario

Intervals during which access status is true

Syntax
int = accessIntervals(ac)

Description
int = accessIntervals(ac) returns a table of intervals during which the access status
corresponding to each access object in the input vector is true.

Examples

Add Ground stations to Scenario and Visualize Access Intervals

Create satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020, 5, 1, 11, 36, 0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime, stopTime, sampleTime);
lat = [10];
lon = [-30];
gs = groundStation(sc, lat, lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;
eccentricity = 0;
inclination = 10;
rightAscensionOfAscendingNode = 0;
argumentOfPeriapsis = 0;
trueAnomaly = 0;
sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
 rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly);

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat, gs);
intvls = accessIntervals(ac)

intvls=8×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 _____________ __________________ ______________ ____________________ ____________________ ________ __________ ________

 "Satellite 2" "Ground station 1" 1 01-May-2020 11:36:00 01-May-2020 12:04:00 1680 1 1
 "Satellite 2" "Ground station 1" 2 01-May-2020 14:20:00 01-May-2020 15:11:00 3060 1 2

 accessIntervals

2-99

 "Satellite 2" "Ground station 1" 3 01-May-2020 17:27:00 01-May-2020 18:18:00 3060 3 3
 "Satellite 2" "Ground station 1" 4 01-May-2020 20:34:00 01-May-2020 21:25:00 3060 4 4
 "Satellite 2" "Ground station 1" 5 01-May-2020 23:41:00 02-May-2020 00:32:00 3060 5 5
 "Satellite 2" "Ground station 1" 6 02-May-2020 02:50:00 02-May-2020 03:39:00 2940 6 6
 "Satellite 2" "Ground station 1" 7 02-May-2020 05:59:00 02-May-2020 06:47:00 2880 7 7
 "Satellite 2" "Ground station 1" 8 02-May-2020 09:06:00 02-May-2020 09:56:00 3000 8 9

Play the scenario to visualize the ground stations.

play(sc)

Input Arguments
ac — Access analysis
row vector of Access objects

Access analysis, specified as a row vector of a Access objects.

2 Functions

2-100

Outputs Arguments
int — Intervals during which access is true
table

Intervals during which access is true, returned as a table.

Each row of the table denotes a specific interval, and the columns of the table are named Source,
Target, IntervalNumber, StartTime, EndTime, Duration (in seconds), StartOrbit, and
EndOrbit. Source and Target are the names of the first and last node, respectively, defining the
access analysis.

• If Source is a satellite or an object that is directly or indirectly attached to a satellite, then
StartOrbit and EndOrbit correspond to the satellite associated with Source.

• If Target is a satellite or an object that is directly or indirectly attached to a satellite, then
StartOrbit and EndOrbit correspond to the satellite associated with Target. Otherwise,
StartOrbit and EndOrbit are NaN because they are associated with ground stations.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
conicalSensor | groundStation | hide | play | receiver | show | transmitter

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 accessIntervals

2-101

orbitalElements
Package: satelliteScenario

Orbital elements of satellites in scenario

Syntax
elements = orbitalElements(sat)

Description
elements = orbitalElements(sat) returns the orbital elements of the specified satellite sat.

Input Arguments
sat — Satellite
row vector of Satellite objects

Satellite, specified as a row vector of Satellite objects.

Output Arguments
elements — Orbital elements
structure

Orbital elements of input sat, returned as a structure. The fields of the structure depend on the orbit
propagator chosen using the OrbitPropagator property of the satelliteScenario object.

For more information regarding orbital elements, see “Orbital Elements”.

Two Body Keplerian

The two-body-keplerian orbit propagator has these fields:

• SemiMajorAxis
• Eccentricity
• Inclination
• RightAscensionOfAscendingNode
• ArgumentOfPeriapsis
• TrueAnomaly
• Period

SGP4 and SDP4

The sgp4 and sdp4 orbit propagators have these fields:

• Eccentricity

2 Functions

2-102

• Inclination
• RightAscensionOfAscendingNode
• ArgumentOfPeriapsis
• MeanAnomaly
• MeanMotion
• Epoch
• BStar
• Period

The orbital elements represent the mean values at Epoch.

Ephemeris

The ephemeris propagator has these fields:

• EphemerisStartTime
• EphemerisStopTime
• PositionTimeTable
• VelocityTimeTable

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | conicalSensor | groundStation | play | receiver | satellite | show |
transmitter

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 orbitalElements

2-103

accessStatus
Package: satelliteScenario

Status of access between first and last node defining access analysis

Syntax
s = accessStatus(ac)
s = accessStatus(ac,timeIn)
[s,timeOut] = accessStatus(___)

Description
s = accessStatus(ac) returns the access status history between the first and last node defining
each access object in the input vector.

s = accessStatus(ac,timeIn) returns the status of each access analysis object at the specified
datetime in timeIn.

[s,timeOut] = accessStatus(___) returns the status of each access analysis object and the
corresponding datetime in Universal Time Coordinated (UTC).

Input Arguments
ac — Access analysis
row vector of Access objects

Access analysis, specified as a row vector of Access objects.

timeIn — Time at which output is calculated
scalar

Time at which the output is calculated, specified as a scalar. If you do not specify a time zone, then
the time zone is assumed to be UTC.

Outputs Arguments
s — Access analysis status
scalar or row vector of logical values

Access analysis status, returned as a scalar or row vector of logical values. If timeIn is specified,
s is a row vector, otherwise, the output is a scalar. The status at a given instant is 1 (true) if access
exists between each pair of adjacent nodes defined by Sequence. For example, in a given pair, say
defined by node1 and node2, node1 has access to node2 and vice versa.

• If a node is a satellite, then the satellite has access to the adjacent node if both nodes are in line of
sight of each other.

2 Functions

2-104

• If a node is a ground station, then the ground station has access to the adjacent node if the
elevation angle of the node with respect to the ground station is greater than or equal to the
MinElevationAngle property of GroundStation.

• If a node is a conical sensor, then the conical sensor has access to the adjacent node if the latter is
in the field of view of the former. If the conical sensor is attached to a ground station directly or
via a gimbal, then the elevation angle of the adjacent node with respect to the ground station must
be greater than or equal to the MinElevationAngle property of GroundStation.

timeOut — Time samples of output access status
scalar | vector

Time samples of the output access status, returned as a scalar or vector. If the time history of the
access status is returned, timeOut is a row vector.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
conicalSensor | groundStation | hide | play | receiver | show | transmitter

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 accessStatus

2-105

states
Package: satelliteScenario

Position and velocity of satellite

Syntax
pos = states(sat)
[pos,velocity] = states(sat)
[___] = states(sat,timeIn)
[___] = states(___ ,'CoordinateFrame',C)
[pos,velocity,timeOut] = states(___)

Description
pos = states(sat) returns a 3-by-n matrix with the position history of the satellite sat in the
Geocentric Celestial Reference Frame (GCRF), where n is the number of time samples in the satellite
scenario simulation.

[pos,velocity] = states(sat) returns a 3-by-n matrix with the position and velocity history of
satellite in GCRF.

[___] = states(sat,timeIn) also returns the outputs at the times specified by timeIn. Specify
any output argument combinations from previous syntaxes.

[___] = states(___ ,'CoordinateFrame',C) returns the outputs in the coordinates specified
by C.

[pos,velocity,timeOut] = states(___) returns the position and velocity history of the
satellite and the corresponding time in Universal Time Coordinated (UTC).

Input Arguments
sat — Satellite
row vector of Satellite objects

Satellite, specified as a row vector of Satellite objects.

timeIn — Time at which output is calculated
scalar

Time at which the output is calculated, specified as a scalar. If you do not specify a time zone, then
the time zone is assumed to be UTC.

C — Coordinate frame
'ecef' | 'inertial' | 'geographical'

Coordinate frame in which the outputs are returned, specified as 'ecef', 'inertial', or
'geographical'.

2 Functions

2-106

• The 'ecef' option returns the coordinates in the Earth Centered Earth Fixed (ECEF) frame. For
more information on ECEF frames, see “Earth-Centered Earth-Fixed Coordinates”.

• The 'inertial' option returns the coordinates in the GCRF frame.
• The 'geographic' option returns the position as [lat; lon; altitude], where lat and lon are

latitude and longitude in degrees, and altitude is the height above the wgs84 ellipsoid in meters.
The velocity returned is ECEF, defined in the local North-East-Down (NED) frame.

Output Arguments
pos — Position history
scalar | vector | matrix | N-D array

Position history of the satellite, returned as a scalar, vector, matrix, or N-D array in the GCRF frame.
Units are in meters.

velocity — Velocity history
scalar | vector | matrix | N-D array

Velocity history of the satellite, returned as a scalar, vector, matrix, or N-D array in the GCRF frame.
Units are in meters/second.

timeOut — Time samples of position and velocity
scalar | vector | matrix | N-D array

Time samples of the position and velocity of the satellite, returned as a scalar, vector, matrix, or N-D
array. If time histories of the position and velocity of the satellite are returned, timeOut is a row
vector.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | groundStation | hide | play | show

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 states

2-107

gimbalAngles
Steering angles of gimbal

Syntax
az = gimbalAngles(gim)
[az,el] = gimbalAngles(gim)
[az,el,timeOut] = gimbalAngles(gim)
[___] = gimbalAngles(gim,timeIn)

Description
az = gimbalAngles(gim) returns the steering azimuth of the specified gimbal., in degrees. The
gimbal is steered to the desired pointing direction by first rotating it about its body z - axis (steering
azimuth) and secondly rotating it about its body y - axis (steering elevation).

[az,el] = gimbalAngles(gim) returns the steering azimuth and steering elevation of the
specified gimbal.

[az,el,timeOut] = gimbalAngles(gim) returns the steering azimuth and steering elevation of
the gimbal and the corresponding time in UTC.

[___] = gimbalAngles(gim,timeIn) returns the steering azimuth and steering elevation
(depending on the specified output arguments) of the gimbal at the specified time. If you do not
specify a time zone, the time zone is assumed to be Universal Time Coordinated (UTC).

Input Arguments
gim — Gimbal
Gimbal object

Gimbal whose steering angle is being calculated, specified as a Gimbal object.

Output Arguments
az — Azimuth angles
scalar | vector

Azimuth angles of target in the local azimuth, elevation and range (AER) system, returned as a scalar
or vector. Azimuths are measured clockwise from North. Values are specified in degrees in the
interval [0, 360). The vector elements correspond to the time samples from the satellite scenario
StartTime to StopTime properties, as specified by the SampleTime property. The azimuth angle is
defined in the North-East-Down (NED) frame of (and centered at) objIn such that 0 degrees is
North, 90 degrees is East, 180 degrees is South, and 270 degrees is West.

el — Elevation angles
scalar | vector

2 Functions

2-108

Elevation angles of target in the local AER system, returned as a scalar or vector. Elevations are
measured with respect to a plane that is perpendicular to the normal of the surface of the earth. If
objIn is on the surface of the Earth, then the plane is tangent to the Earth.

Values are specified in degrees in the closed interval [0 180]. The vector elements correspond to the
time samples from the satellite scenario StartTime to StopTime properties, as specified by the
SampleTime property. The elevation angle is defined in the NED frame of (and centered at) objIn
such that 0 deg implies target is on the North East (NE) plane, 90 degrees implies target is
directly above objIn, and -90 degrees implies target is directly below objIn.

timeOut — Time samples between start and stop time of scenario
scalar | vector | matrix | N-D array

Time samples between start and stop time of the scenario, returned as a scalar, vector, matrix, or N-D
array. If az and el histories are returned

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
conicalSensor | groundStation | hide | play | receiver | show | transmitter

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 gimbalAngles

2-109

show
Package: satelliteScenario

Show object in satellite scenario viewer

Syntax
show(item)
show(item,v)

Description
show(item) shows the item on all open Satellite Scenario Viewers.

show(item,v) shows the graphic on the Satellite Scenario Viewer specified by v.

Examples

Add Satellites to Scenario Using Keplerian Elements

Create a satellite scenario with a start time of 02-June-2020 8:23:00 AM UTC, and the stop time set to
one day later. Set the simulation sample time to 60 seconds.

startTime = datetime(2020,6,02,8,23,0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add two satellites to the scenario using their Keplerian elements.

semiMajorAxis = [10000000; 15000000];
eccentricity = [0.01; 0.02];
inclination = [0; 10];
rightAscensionOfAscendingNode = [0; 15];
argumentOfPeriapsis = [0; 30];
trueAnomaly = [0; 20];

sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
 rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly)

sat =
 1×2 Satellite array with properties:

 Name
 ID
 ConicalSensors
 Gimbals
 Transmitters
 Receivers
 Accesses
 GroundTrack

2 Functions

2-110

 Orbit
 OrbitPropagator
 MarkerColor
 MarkerSize
 ShowLabel
 LabelFontSize
 LabelFontColor

View the satellites in orbit and the ground tracks over one hour.

show(sat)
groundTrack(sat,'LeadTime',3600)

ans=1×2 object
 1×2 GroundTrack array with properties:

 LeadTime
 TrailTime
 LineWidth
 TrailLineColor
 LeadLineColor
 VisibilityMode

play(sc)

 show

2-111

Input Arguments
item — Item
Satellite object | GroundStation object | ConicalSensor object | GroundTrack object |
FieldofView object | Access object | Link object

Satellite, GroundStation, ConicalSensors, GroundTrack, FieldOfView, Access or Link
object. These objects must belong to the same satelliteScenario, object.

Note If item is a satellite or a ground station, then the associated transmitters, receivers and
gimbals are also displayed on the viewer.

v — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object.

2 Functions

2-112

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | conicalSensor | groundStation | hide | play | receiver | transmitter

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 show

2-113

hide
Package: satelliteScenario

Hides satellite scenario entity from viewer

Syntax
hide(item)
hide(item,v)

Description
hide(item) hides item from all open satellite scenario viewers.

hide(item,v) hides the specified satellite scenario entity on the satellite scenario viewer specified
by v.

Input Arguments
item — Item
Satellite object | GroundStation object | ConicalSensor object | GroundTrack object |
FieldofView object | Access object | Link object

Satellite, GroundStation, ConicalSensors, GroundTrack, FieldOfView, Access or Link
object. These objects must belong to the same satelliteScenario, object.

v — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer.

See Also
Objects
satellite | satelliteScenarioViewer

Functions
access | groundStation | hideAll | play | satelliteScenario | show | showAll

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-114

ebno
Package: satelliteScenario

Eb/No at final node of link

Syntax
e = ebno(lnk)
e = ebno(lnk,timeIn)
[e,timeOut] = ebno(___)

Description
e = ebno(lnk) returns history of received energy per bit to noise power spectral density (Eb/No)
values at the final node in a possibly multihop link.

e = ebno(lnk,timeIn) returns the received Eb/No values at the specified time.

[e,timeOut] = ebno(___) returns the received Eb/No values and the corresponding times in
Universal Time Incorporated (UTC).

Input Arguments
lnk — Link analysis
Link object scalar

Link analysis object, specified as a Link object scalar.

timeIn — Time at which output is calculated
scalar

Time at which the output is calculated, specified as a scalar. If you do not specify a time zone, then
the time zone is assumed to be UTC.

Output Arguments
e — Eb/No
scalar | vector

Eb/No, returned as a scalar or vector. If timeIn is not specified, e is a row vector.

timeOut — Time samples of output Eb/No
scalar | vector

Time samples of the output Eb/No, returned as a scalar or vector. If time history of Eb/No is returned,
timeOut is a row vector.

 ebno

2-115

See Also
Objects
Link | satelliteScenario | satelliteScenarioViewer

Functions
hide | play | show

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-116

access
Package: satelliteScenario

Add access analysis objects to satellite scenario

Syntax
access(obj1,...,objN)
ac = access(obj1,...,objN)
ac = access(___ ,'Viewer',Viewer)

Description
access(obj1,...,objN) adds Access objects defined by obj1, obj2, and so on.

ac = access(obj1,...,objN) returns a handle to the added access objects. The length of the
vector corresponds to the number of Access objects added to the handle to the added access.

ac = access(___ ,'Viewer',Viewer) sets the viewer in addition to any input argument
combination from previous syntaxes. For example, 'Viewer',v1 picks the viewer v1.

Examples

Add Ground stations to Scenario and Visualize Access Intervals

Create satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020, 5, 1, 11, 36, 0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime, stopTime, sampleTime);
lat = [10];
lon = [-30];
gs = groundStation(sc, lat, lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;
eccentricity = 0;
inclination = 10;
rightAscensionOfAscendingNode = 0;
argumentOfPeriapsis = 0;
trueAnomaly = 0;
sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
 rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly);

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat, gs);
intvls = accessIntervals(ac)

 access

2-117

intvls=8×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 _____________ __________________ ______________ ____________________ ____________________ ________ __________ ________

 "Satellite 2" "Ground station 1" 1 01-May-2020 11:36:00 01-May-2020 12:04:00 1680 1 1
 "Satellite 2" "Ground station 1" 2 01-May-2020 14:20:00 01-May-2020 15:11:00 3060 1 2
 "Satellite 2" "Ground station 1" 3 01-May-2020 17:27:00 01-May-2020 18:18:00 3060 3 3
 "Satellite 2" "Ground station 1" 4 01-May-2020 20:34:00 01-May-2020 21:25:00 3060 4 4
 "Satellite 2" "Ground station 1" 5 01-May-2020 23:41:00 02-May-2020 00:32:00 3060 5 5
 "Satellite 2" "Ground station 1" 6 02-May-2020 02:50:00 02-May-2020 03:39:00 2940 6 6
 "Satellite 2" "Ground station 1" 7 02-May-2020 05:59:00 02-May-2020 06:47:00 2880 7 7
 "Satellite 2" "Ground station 1" 8 02-May-2020 09:06:00 02-May-2020 09:56:00 3000 8 9

Play the scenario to visualize the ground stations.

play(sc)

2 Functions

2-118

Input Arguments
obj1,...,objN — Satellite, ground station, or conical sensor
Satellite object | GroundStation object | ConicalSensor object

Satellite, GroundStation, or ConicalSensors object. These objects must belong to the same
satelliteScenario object. The function adds the access analysis object to the Accesses property
of obj1,...,objN.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Viewer',v1 picks the viewer v1.

Viewer — Satellite scenario viewer
(default) | row vector of all viewer objects | row vector of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a row vector of satelliteScenarioViewer objects.
Data Types: char | string

Output Arguments
ac — Access analysis
Access object scalar

Access analysis between input objects, returned as an Access object scalar.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
conicalSensor | groundStation | hide | play | receiver | show | transmitter

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 access

2-119

groundStation
Add ground station to satellite scenario

Syntax
groundStation(scenario)
groundStation(scenario,lat,lon)
groundStation(___ ,Name,Value)
gs = groundStation(___)

Description
groundStation(scenario) adds a default GroundStation object to the specified satellite
scenario.

groundStation(scenario,lat,lon) sets the Latitude and Longitude properties of the ground
station to lat and lon, respectively. lat and lon must be of the same length. This length specifies
the number of ground stations that the function adds to the input scenario. Together, lat and lon
indicate the locations of the ground stations.

groundStation(___ ,Name,Value) sets options using one or more name-value arguments in
addition to any input argument combination from previous syntaxes. For example,
'MinElevationAngle',10 specifies a minimum elevation angle of 10 degrees.

gs = groundStation(___) returns a vector of handles to the added ground stations. Specify any
input argument combination from previous syntaxes.

Examples

Add Ground stations to Scenario and Visualize Access Intervals

Create satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020, 5, 1, 11, 36, 0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime, stopTime, sampleTime);
lat = [10];
lon = [-30];
gs = groundStation(sc, lat, lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;
eccentricity = 0;
inclination = 10;
rightAscensionOfAscendingNode = 0;
argumentOfPeriapsis = 0;
trueAnomaly = 0;
sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
 rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly);

2 Functions

2-120

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat, gs);
intvls = accessIntervals(ac)

intvls=8×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 _____________ __________________ ______________ ____________________ ____________________ ________ __________ ________

 "Satellite 2" "Ground station 1" 1 01-May-2020 11:36:00 01-May-2020 12:04:00 1680 1 1
 "Satellite 2" "Ground station 1" 2 01-May-2020 14:20:00 01-May-2020 15:11:00 3060 1 2
 "Satellite 2" "Ground station 1" 3 01-May-2020 17:27:00 01-May-2020 18:18:00 3060 3 3
 "Satellite 2" "Ground station 1" 4 01-May-2020 20:34:00 01-May-2020 21:25:00 3060 4 4
 "Satellite 2" "Ground station 1" 5 01-May-2020 23:41:00 02-May-2020 00:32:00 3060 5 5
 "Satellite 2" "Ground station 1" 6 02-May-2020 02:50:00 02-May-2020 03:39:00 2940 6 6
 "Satellite 2" "Ground station 1" 7 02-May-2020 05:59:00 02-May-2020 06:47:00 2880 7 7
 "Satellite 2" "Ground station 1" 8 02-May-2020 09:06:00 02-May-2020 09:56:00 3000 8 9

Play the scenario to visualize the ground stations.

play(sc)

 groundStation

2-121

Input Arguments
scenario — Satellite scenario
satelliteScenario object

Satellite scenario, specified as a satelliteScenario object.

lat, lon — Latitude and longitude
real-valued scalar | real-valued vector

Latitude and longitude of the ground station, specified as a real-valued scalar or real-valued vector.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

2 Functions

2-122

Example: 'MinElevationAngle',10 specifies a minimum elevation angle of 10 degrees.

Viewer — Satellite scenario viewer
(default) | row vector of all viewer objects | row vector of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a row vector of satelliteScenarioViewer objects.
Data Types: char | string

Name — groundStation name
"groundStation idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling groundStation. After you call groundStation, this property
is read-only.

groundStation name, specified as a comma-separated pair consisting of 'Name' and a string scalar,
string vector, character vector or a cell array of character vectors.

• If only one groundStation is added, specify Name as a string scalar or a character vector.
• If multiple groundStations are added, specify Name as a string vector or a cell array of character

vectors. The number of elements in the string vector or cell array must be equal to the number of
satellites being added.

In the default value, idx is the count of the groundStation added by the groundStation object
function. If another groundStation of the same name exists, a suffix _idx2 is added, where idx2 is an
integer that is incremented by 1 starting from 1 until the name duplication is resolved.
Data Types: char | string

Latitude — Geodetic latitude of ground stations
42.3001 (default) | scalar | row vector

You can set this property only when calling groundStation. After you call groundStation, this property
is read-only.

Geodetic latitude of ground stations, specified as a scalar. Values must be in the range [-90, 90].

• If you add only one ground station, specify Latitude as a scalar double.
• If you add multiple ground stations, specify Latitude as a vector double whose length is equal to

the number of ground stations being added.

When latitude and longitude are specified as lat, lon inputs to groundStation, Latitude specified as
a name-value argument takes precedence.
Data Types: double

Longitude — Geodetic longitude of ground stations
-71.3504 (default) | scalar | row vector

You can set this property only when calling groundStation. After you call groundStation, this property
is read-only.

Geodetic longitude of ground stations, specified as a scalar or a vector. Values must be in the range
[-180, 180].

 groundStation

2-123

• If you add only one ground station, specify longitude as a scalar.
• If you add multiple ground stations, specify longitude as a vector whose length is equal to the

number of ground stations being added.

When longitude and longitude are specified as lat, lon inputs to groundStation, longitude specified
as a name-value argument takes precedence.
Data Types: double

Altitude — Altitude of ground station
0 m (default) | scalar | vector

You can set this property only when calling groundStation. After you call groundStation, this property
is read-only.

Altitude of ground stations, specified as a scalar or a vector.

• If you specify Altitude as a scalar, the value is assigned to each ground station in the
groundStation.

• If you specify Altitude as a vector, the vector length must be equal to the number of ground
stations in the groundStation.

When latitude and longitude are specified as lat, lon inputs to groundStation, Latitude specified as
a name-value argument takes precedence.
Data Types: double

MinElevationAngle — Minimum elevation angle
0 (default) | scalar | vector

Minimum elevation angle of a satellite for the satellite to be visible from the ground station, specified
as a scalar or row vector. Values must be in the range [–90, 90]. For access and link closure to be
possible, the elevation angle must be at least equal to the value specified in MinElevationAngle.

• If you specify MinElevationAngle as a scalar, the value is assigned to each ground station in the
groundStation.

• If you specify MinElevationAngle as a vector, the vector length must be equal to the number of
ground stations in the groundStation.

Data Types: double

Output Arguments
gs — Ground station in scenario
GroundStation object

Ground station in the scenario, returned as a GroundStation object belonging to the satellite
scenario specified by the input scenario.

You can modify the GroundStation object by changing its property values. The name-value
arguments used when calling this function correspond to property names.

2 Functions

2-124

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | hide | play | receiver | satellite | show | transmitter

Topics
“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Constellation Access to a Ground Station”
“Comparison of Orbit Propagators”
“Modeling Satellite Constellations using Ephemeris Data”
“Estimate GNSS Receiver Position with Simulated Satellite Constellations”
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 groundStation

2-125

transmitter
Package: satelliteScenario

Add transmitter to satellite scenario

Syntax
transmitter(parent)
transmitter(parent,Name,Value)
tx = transmitter(___)

Description
transmitter(parent) adds a default Transmitter object to the parent which can be a
Satellite, GroundStation or Gimbal.

transmitter(parent,Name,Value) specifies options using one or more name-value arguments.
For example, 'MountingAngle',[20; 35; 10] sets the yaw, pitch, and roll angles of the
transmitter to 20, 35, and 10 degrees, respectively.

tx = transmitter(___) returns a handle to the added transmitter. Specify any input argument
combination from previous syntaxes.

Input Arguments
parent — Element of scenario to which transmitter is added
Satellite object | GroundStation object | Gimbal object

Element of scenario to which the transmitter is added, specified as a Satellite, GroundStation,
or Gimbal object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'MountingAngle',[20; 35; 10] sets the yaw, pitch, and roll angles of the transmitter
to 20, 35, and 10 degrees, respectively.

Name — transmitter name
"transmitter idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling transmitter. After you call transmitter, this property is
read-only.

transmitter name, specified as a comma-separated pair consisting of 'Name' and a string scalar,
string vector, character vector or a cell array of character vectors.

2 Functions

2-126

• If only one transmitter is added, specify Name as a string scalar or a character vector.
• If multiple transmitters are added, specify Name as a string vector or a cell array of character

vectors. The number of elements in the string vector or cell array must be equal to the number of
satellites being added.

In the default value, idx is the count of the transmitter added by the transmitter object function. If
another transmitter of the same name exists, a suffix _idx2 is added, where idx2 is an integer that is
incremented by 1 starting from 1 until the name duplication is resolved.
Data Types: char | string

MountingLocation — Mounting location with respect to parent
[0; 0; 0] (default) | three-element row vector of positive numbers

Mounting location with respect to the parent object, specified as a three-element row vector of
positive numbers in meters. The position vector is specified in the body frame of the input parent.

MountingAngles — Mounting orientation with respect to parent object
[0; 0; 0] (default) | three-element row vector of positive numbers

Mounting orientation with respect to parent object, specified as a three-element row vector of
positive numbers in degrees. The elements of the vector correspond to yaw, pitch, and roll in that
order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.
Example: [0; 30; 60]

Antenna — Antenna object associated with transmitter
gaussianAntenna object

Antenna object associated with the transmitter, specified as an antenna object. The default gaussian
antenna has a dish diameter of 1 m and an aperture efficiency of 0.65.

SystemLoss — Total loss in transmitter
5 (default) | positive scalar

Total loss in the transmitter, specified as a real positive scalar. Units are in dB.

Frequency — Transmitter frequency
14e9 (default) | positive scalar

Transmitter frequency, specified as a positive scalar. Units are in Hz.

BitRate — Bit rate of transmitter
10 (default) | real positive scalar

Bit rate of the transmitter, specified as a real positive scalar. Units are in Mbps.

Power — Power of high power amplifier
12 (default) | real positive scalar

Power of the high power amplifier, specified as a real positive scalar. Units are in dbW.

 transmitter

2-127

Output Arguments
tx — Transmitter
Transmitter object

Transmitter attached to parent, returned as a Transmitter object.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | groundStation | hide | link | play | receiver | show

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-128

receiver
Package: satelliteScenario

Add receiver to satellite scenario

Syntax
receiver(parent)
receiver(parent,Name,Value)
rx = receiver(___)

Description
receiver(parent) adds a default Receiver object to the parent which can be a Satellite,
GroundStation or Gimbal.

receiver(parent,Name,Value) specifies options using one or more name-value arguments. For
example, 'MountingAngle',[20; 35; 10] sets the yaw, pitch, and roll angles of the transmitter
to 20, 35, and 10 degrees, respectively.

rx = receiver(___) returns a handle to the added receiver. Specify any input argument
combination from previous syntaxes.

Input Arguments
parent — Element of scenario to which receiver is added
Satellite object | GroundStation object | Gimbal object

Element of scenario to which the receiver is added, specified as a Satellite, GroundStation, or
Gimbal object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'MountingAngle',[20; 35; 10] sets the yaw, pitch, and roll angles of the receiver to
20, 35, and 10 degrees, respectively.

Name — receiver name
"receiver idx" (default) | string scalar | string vector | character vector | cell array of character
vectors

You can set this property only when calling receiver. After you call receiver, this property is read-only.

receiver name, specified as a comma-separated pair consisting of 'Name' and a string scalar, string
vector, character vector or a cell array of character vectors.

• If only one receiver is added, specify Name as a string scalar or a character vector.

 receiver

2-129

• If multiple receivers are added, specify Name as a string vector or a cell array of character vectors.
The number of elements in the string vector or cell array must be equal to the number of satellites
being added.

In the default value, idx is the count of the receiver added by the receiver object function. If
another receiver of the same name exists, a suffix _idx2 is added, where idx2 is an integer that is
incremented by 1 starting from 1 until the name duplication is resolved.
Data Types: char | string

MountingLocation — Mounting location with respect to parent
[0; 0; 0] (default) | three-element row vector of positive numbers

Mounting location with respect to the parent object, specified as a three-element row vector of
positive numbers in meters. The position vector is specified in the body frame of the input parent.

MountingAngles — Mounting orientation with respect to parent object
[0; 0; 0] (default) | three-element row vector of positive numbers

Mounting orientation with respect to parent object, specified as a three-element row vector of
positive numbers in degrees. The elements of the vector correspond to yaw, pitch, and roll in that
order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.
Example: [0; 30; 60]

Antenna — Antenna object associated with receiver
gaussianAntenna object

Antenna object associated with the receiver, specified as an antenna object. The default gaussian
antenna has a dish diameter of 1 m and an aperture efficiency of 0.65.

SystemLoss — Total loss in receiver
5 (default) | positive scalar

Total loss in the receiver, specified as a real positive scalar. Units are in dB.

GainToNoiseTemperatureRatio — Gain to noise temperature ratio
3 (default) | scalar

Gain to noise temperature ratio of the antenna, specified as the comma-separated pair consisting of
'GainToNoiseTemperatureRatio' and a scalar. Units are in dB/K.

RequiredEbNo — Lowest Eb/No necessary for link closure
10 (default) | positive scalar

Lowest energy per bit to noise power spectral density ratio (Eb/No) necessary for link closure,
specified as the comma-separated pair consisting of 'RequiredEbNo' and a positive scalar. Units
are in dB.

Output Arguments
rx — Receiver
Receiver object

Receiver attached to parent, returned as a Receiver object.

2 Functions

2-130

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | groundStation | hide | link | play | show | transmitter

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 receiver

2-131

gimbal
Add gimbal to satellite or ground station

Syntax
gimbal(parent)
gimbal(parent,Name,Value)
gimbal(___)

Description
gimbal(parent) adds a default Gimbal object to parent, which can be a satellite, ground station,
or gimbal.. A gimbal can dynamically change orientation independent of the parent. Transmitters,
receivers, and conical sensors can be mounted on the gimbals.

gimbal(parent,Name,Value) specifies options using one or more name-value arguments.

gim = gimbal(___) returns a handle to the added gimbal. Specify any input argument combination
from previous syntaxes.

Input Arguments
parent — Element of scenario to which gimbal is added
Satellite object | GroundStation object | Gimbal object

Element of scenario to which the gimbal is added, specified as a Satellite, GroundStation, or
Gimbal object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'MountingAngle',[20; 35; 10] sets the yaw, pitch, and roll angles of gimbal to 20, 35,
and 10 degrees, respectively.

Name — gimbal name
"gimbal idx" (default) | string scalar | string vector | character vector | cell array of character
vectors

You can set this property only when calling gimbal. After you call gimbal, this property is read-only.

gimbal name, specified as a comma-separated pair consisting of 'Name' and a string scalar, string
vector, character vector or a cell array of character vectors.

• If only one gimbal is added, specify Name as a string scalar or a character vector.
• If multiple gimbals are added, specify Name as a string vector or a cell array of character vectors.

The number of elements in the string vector or cell array must be equal to the number of satellites
being added.

2 Functions

2-132

In the default value, idx is the count of the gimbal added by the gimbal object function. If another
gimbal of the same name exists, a suffix _idx2 is added, where idx2 is an integer that is incremented
by 1 starting from 1 until the name duplication is resolved.
Data Types: char | string

MountingLocation — Mounting location with respect to parent
[0; 0; 0] (default) | three-element row vector of positive numbers

Mounting location with respect to the parent object, specified as a three-element row vector of
positive numbers in meters. The position vector is specified in the body frame of the input parent.

MountingAngles — Mounting orientation with respect to parent object
[0; 0; 0] (default) | three-element row vector of positive numbers

Mounting orientation with respect to parent object, specified as a three-element row vector of
positive numbers in degrees. The elements of the vector correspond to yaw, pitch, and roll in that
order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.
Example: [0; 30; 60]

Output Arguments
gim — Gimbal
Gimbal object

Gimbal attached to parent, returned as a Gimbal object.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | conicalSensor | groundStation | hide | play | satellite | show

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 gimbal

2-133

fieldOfView
Package: satelliteScenario

Visualize field of view of conical sensor

Syntax
fieldOfView(sensor)
fieldOfView(sensor,Name,Value)
fov = fieldOfView(___)

Description
fieldOfView(sensor) adds a FieldOfView object to the specified conical sensor, and draws
contours on the Earth. Each contour represents the field of view of a conical sensor in sensor based
on the current state of the scenario.

Locations inside the contour are inside the field of view. If no viewer is open, a new viewer is
launched, and the field of view contours are shown in the open viewer. If a viewer is already open, the
field of view contours are added to it. The contours are the lines of intersection of the surface of the
earth and the field of view cone. The half angle of the field of view cone is equal to the MaxViewAngle
property of the conical sensor, and the axis of the cone is the z-axis (or boresight) of the conical
sensor. The vertex of the cone is located at the position of the conical sensor. The cone becomes wider
along the positive body z-axis of the conical sensor.

fieldOfView(sensor,Name,Value) specifies options by using one or more name-value
arguments.

fov = fieldOfView(___) returns a vector of handles to the added field of view graphic objects.
Specify any input combination from previous syntaxes.

Input Arguments
sensor — Conical sensor
ConicalSensor object

Conical sensor, specified as a ConicalSensor object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'LineWidth',2.5 sets the line width of the field of view to 2.5 pixels.

LineWidth — Visual width of field of view contour
1 (default) | scalar in the range (0 10]

Visual width of the field of view contour in pixels, specified as a scalar in the range (0 10].

2 Functions

2-134

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LineColor — Color of field of view contour
[0 1 0] (default) | RGB triplet | RGB triplet | string scalar of color name | character
vector of color name

Color of field of view contour, specified as an RGB triplet, hexadecimal color code, a color name, or a
short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

 fieldOfView

2-135

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

Output Arguments
fov — Field of view of conical sensor
row vector of FieldOfView objects

Field of view of conical sensor, returned as a row vector of FieldOfView objects.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | conicalSensor | groundStation | hide | play | receiver | show | transmitter

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2 Functions

2-136

link
Package: satelliteScenario

Add link analysis objects to transmitter

Syntax
link(obj1,...,objN)
lnk = link(___)

Description
link(obj1,...,objN) adds Link objects defined by obj1, obj2, and so on..

lnk = link(___) returns a handle to the added Link object.

Input Arguments
obj1,...,objN — Satellite, ground station, or conical sensor
Transmitter object | Receiver object

Transmitter or Receiver object, specified as separate arguments where the obj1 must be a
Transmitter object and any following arguments can be Transmitter or Receiver objects. These
arguments specify the Sequence of the link. These objects must belong to the same
satelliteScenario object. The function adds the link analysis object to the Link property of obj1.

Output Arguments
lnk — Link analysis
Link object scalar

Link analysis between input objects, returned as a row vector of Link objects.

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
groundStation | hide | play | receiver | show | transmitter

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 link

2-137

gaussianAntenna
Package: satelliteScenario

Add Gaussian antennas

Syntax
gaussianAntenna(trx)
gaussianAntenna(trx,Name,Value)
ant = gaussianAntenna(___)

Description
gaussianAntenna(trx) adds GaussianAntenna object to the specified transmitter or receiver.
The gaussian antenna is assigned to the Antenna property by overwriting it.

gaussianAntenna(trx,Name,Value) adds an antenna and specifies options using one or more
name-value arguments. Enclose each property name in quotes. For example, 'DishDiameter',1.7
sets the dish diameter of the antenna to 1.7 meters upon creation.

ant = gaussianAntenna(___) adds an antenna and returns a handle to the added
GaussianAntenna object. You can add only one GaussianAntenna to a given Transmitter or
Receiver.

Input Arguments
trx — Transmitter or receiver
Transmitter object | Receiver object

Transmitter or receiver to which the gaussian antenna is added, specified as a Transmitter or
Receiver object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'DishDiameter',1.7 sets the dish diameter of the antenna to 1.7 meters upon creation.

DishDiameter — Diameter of the antenna dish
1 (default) | positive scalar

You can set this property only when calling gaussianAntenna. After you call gaussianAntenna, this
property is read-only.

Diameter of the Gaussian antenna dish, specified as a real positive scalar. Units are in meters.

ApertureEfficiency — Aperture efficiency of Gaussian antenna
0.65 (default) | scalar in the range (0,1]

2 Functions

2-138

You can set this property only when calling gaussianAntenna. After you call gaussianAntenna, this
property is read-only.

Aperture efficiency of the Gaussian antenna, specified as a scalar in the range (0,1].

Output Arguments
ant — Gaussian antenna
GaussianAntenna object scalar

Gaussian antenna added to the specified transmitter or receiver, returned as a GaussianAntenna
object scalar.

See Also
Objects
satelliteScenario

Functions
access | groundStation | hide | play | receiver | satellite | show | transmitter

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 gaussianAntenna

2-139

groundTrack
Package: satelliteScenario

Add ground track object to satellite in scenario

Syntax
groundTrack(sat)
groundTrack(___ ,Name,Value)

Description
groundTrack(sat) adds ground track visualization for each satellite in sat based on their current
positions. The ground track begins at the scenario StartTime, and ends at the StopTime. The spacing
between samples that make up the ground track visualization is determined by the scenario
SampleTime. If no viewer is open, a new viewer is launched, and the ground track is displayed. If a
viewer is already open, the ground track is added to that viewer. By default, ground tracks will be
displayed in 2-D.

groundTrack(___ ,Name,Value) adds a groundTrack object by using one or more name-value
pairs. Enclose each property name in quotes.

Input Arguments
sat — Satellite
row vector of Satellite objects

Satellite, specified as a row vector of Satellite objects.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'LeadTime',3600 sets the lead time of the ground track to 3600 seconds upon creation.

Viewer — Viewer on which ground track is visualized
satelliteScenarioViewer object

Viewer on which ground track is visualized, specified as a satelliteScenarioViewer object.

LeadTime — Period of future ground track to be visualized
StartTime to StopTime (default) | real positive scalar

Period of future ground track to be visualized in Viewer, specified as a comma-separated pair
consisting of 'LeadTime' and a real positive scalar in seconds.

TrailTime — Period of ground track history to be visualized
StartTime to StopTime (default) | real positive scalar

2 Functions

2-140

Period of ground track history to be visualized in Viewer, specified as a comma-separated pair
consisting of 'TrailTime' and a real positive scalar in seconds.

LineWidth — Visual width of ground track
1 (default) | scalar

Visual width of ground track in pixels, specified as a comma-separated pair consisting of
'LineWidth' and a scalar in the range (0,10).

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LeadTime — Period of ground track to be visualized
StartTime to StopTime (default) | positive scalar

Period of the ground track to be visualized in the satellite scenario viewer, specified as a comma-
separated pair consisting of 'LeadTime' and a real positive scalar in seconds.

TrailTime — Period of ground track history to be visualized
StartTime to StopTime (default) | positive scalar

Period of the ground track history to be visualized in Viewer, specified as a comma-separated pair
consisting of 'TrailTime' and a real positive scalar in seconds.

LineWidth — Visual width of ground track
1 (default) | scalar in the range (0 10]

Visual width of the ground track in pixels, specified as a comma-separated pair consisting of
'LineWidth' and a scalar in the range (0 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LeadLineColor — Color of future ground track line
[1 0 1] (default) | RGB triplet | RGB triplet | string scalar of color name | character
vector of color name

Color of the future ground track line, specified as a comma-separated pair consisting of
'LeadLineColor' and an RGB triplet, a hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

 groundTrack

2-141

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

TrailLineColor — Color of ground track line history
[1 0.5 0] (default) | RGB triplet | RGB triplet | string scalar of color name | character
vector of color name

Color of the ground track line history, specified as a comma-separated pair consisting of
'TrailLineColor' and an RGB triplet, a hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

2 Functions

2-142

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | groundStation | hide | play | satellite | show

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

 groundTrack

2-143

Introduced in R2021a

2 Functions

2-144

Objects

3

ccsdsTCConfig
Create CCSDS TC configuration object

Description
The ccsdsTCConfig object creates a configuration object for Consultative Committee for Space
Data Systems (CCSDS) Telecommand (TC) using default and specified values. ccsdsTCConfig object
is configurable by using applicable “Properties” on page 3-2.

Creation

Syntax
cfg = ccsdsTCConfig
cfg = ccsdsTCConfig(Name,Value)

Description

cfg = ccsdsTCConfig creates a CCSDS TC configuration object using default properties.

cfg = ccsdsTCConfig(Name,Value) sets “Properties” on page 3-2 using one or more name-
value pairs. Enclose each property name in quotes. For example,
ccsdsTCConfig('DataFormat','CLTU','Modulation','BPSK') configures the CSSDS TC
configuration object with a communications link transmission unit data format and binary phase shift
keying (BPSK) modulation scheme.

Properties
DataFormat — Data formats used by PLOPs
"CLTU" (default) | "acquisition sequence" | "idle sequence"

Data formats used by physical layer operation procedures (PLOPs), specified as one of these options.

• "CLTU" — Communications link transmission unit (CLTU)
• "acquisition sequence"
• "idle sequence"

Data Types: char | string

ChannelCoding — Forward error correction coding
"BCH" (default) | "LDPC"

Forward error correction coding, specified as one of these options.

• "BCH" — Bose Chaudhuri Hocquenghem (BCH)
• "LDPC" — Low-density parity–check (LDPC)

3 Objects

3-2

Dependencies

To enable this property, set the DataFormat property to "CLTU".
Data Types: char | string

LDPCCodewordLength — LDPC codeword length
128 (default) | 512

LDPC codeword length, specified as 128 or 512.

Dependencies

To enable this property, set the ChannelCoding property to "LDPC".
Data Types: double

HasRandomizer — Flag to indicate randomization
1 or true (default) | 0 or false

Flag to indicate randomization on the bits in CLTU and on the fill data added prior to randomization,
specified as a logical value of 1 (true) or 0 (false). To indicate the presence of a randomizer in the
waveform, set this value to 1 (true).

Dependencies

To enable this property, set the ChannelCoding property to "BCH".
Data Types: logical

HasTailSequence — Flag to indicate tail sequence in CLTU
1 or true (default) | 0 or false

Flag to indicate the tail sequence in CLTU, specified as a logical value of 1 (true) or 0 (false). To
indicate the presence of the tail sequence to delimit the end of a CLTU, set this value to 1 (true).

Dependencies

To enable this property, set the ChannelCoding property to "LDPC" and the LDPCCodewordLength
property to 128.
Data Types: logical

Modulation — Modulation scheme
"PCM/PSK/PM" (default) | "PCM/PM/biphase-L" | "BPSK"

Modulation scheme used to generate the CCSDS TC waveform, in the form of baseband in-phase
quadrature (IQ) samples, specified as one of these options.

• "PCM/PSK/PM" — The line coded signal as per the pulse code modulation (PCM) format is phase
shift keying (PSK) modulated on a sine wave subcarrier and then phase modulated (PM) on a
residual carrier.

• "PCM/PM/biphase-L" — The biphase-L (Manchester) encoded data is phase modulated on a
residual carrier.

• "BPSK" — Suppressed carrier modulation by using non-return-to-zero (NRZ) data on the carrier.

For more details on these modulation schemes, see [3].

 ccsdsTCConfig

3-3

Data Types: char | string

PCMFormat — PCM format
"NRZ-L" (default) | "NRZ-M"

Pulse code modulation (PCM) format, specified as one of these options. This property specifies the
PCM coding in the CCSDS TC waveform.

• "NRZ-L" — NRZ-level
• "NRZ-M" — NRZ-mark

Dependencies

To enable this property, set the Modulation property to "PCM/PSK/PM".
Data Types: char | string

ModulationIndex — Modulation index in residual carrier phase modulation
0.4 (default) | scalar in the range [0.2, 2]

Modulation index in the residual carrier phase modulation, specified as a scalar in the range [0.2, 2].
Units are in radians.

Dependencies

To enable this property, set the Modulation property to "PCM/PSK/PM" or "PCM/PM/biphase-L".
Data Types: double

SubcarrierFrequency — Sine wave subcarrier frequency
16000 (default) | 8000

Sine wave subcarrier frequency in Hertz, specified as 16000 or 8000. The subcarrier waveform is
used to PSK-modulate the NRZ data on the residual RF carrier.

Dependencies

To enable this property, set the Modulation property to "PCM/PSK/PM".
Data Types: double

SymbolRate — Symbol rate
4000 (default) | 2000 | 1000 | 500 | 250 | 125 | 62.5 | 31.25 | 15.625 | 7.8125

Symbol rate in coded symbols per second, specified as one of these options.

• 4000
• 2000
• 1000
• 500
• 250
• 125
• 62.5
• 31.25

3 Objects

3-4

• 15.625
• 7.8125

Note If you set SymbolRate to 4000 coded symbols per second, you must set the
SubcarrierFrequency property to 16000.

Dependencies

To enable this property, set the Modulation property to "PCM/PSK/PM".
Data Types: double

SamplesPerSymbol — Number of samples per symbol
10 (default) | positive integer

Number of samples per symbol, specified as a positive integer.
Dependencies

To enable this property, set the Modulation property to "PCM/PSK/PM" or "PCM/PM/biphase-L".
Data Types: double

SubcarrierWaveform — Waveform used to PSK-modulate NRZ data
"sine"

This property is read-only.

Waveform used to PSK-modulate the NRZ data, returned as "sine". CCSDS TC supports only sine-
wave subcarriers.
Dependencies

To enable this property, set the Modulation property to "PCM/PSK/PM".
Data Types: char | string

Object Functions

Specific to This Object
ccsdsTCWaveform Generate CCSDS TC waveform

Examples

Create CCSDS TC Object

Create a Consultative Committee for Space Data Systems (CCSDS) Telecommand (TC) configuration
object. Specify the properties of the object.

cfg = ccsdsTCConfig;
cfg.ChannelCoding = "LDPC";
cfg.HasTailSequence = false;
cfg.PCMFormat = "NRZ-M";

 ccsdsTCConfig

3-5

Display the properties of the CCSDS TC object.

disp(cfg)

 ccsdsTCConfig with properties:

 DataFormat: "CLTU"
 ChannelCoding: "LDPC"
 LDPCCodewordLength: 128
 HasTailSequence: 0
 Modulation: "PCM/PSK/PM"
 PCMFormat: "NRZ-M"
 ModulationIndex: 0.4000
 SubcarrierFrequency: 16000
 SymbolRate: 4000
 SamplesPerSymbol: 10

 Read-only properties:
 SubcarrierWaveform: "sine"

Create CCSDS TC Waveform for Multiple CLTUs

Create a Consultative Committee for Space Data Systems (CCSDS) Telecommand (TC) time-domain
waveform for multiple communications link transmission units (CLTUs).

Create a default CCSDS TC configuration object.

cfg = ccsdsTCConfig;
disp(cfg)

 ccsdsTCConfig with properties:

 DataFormat: "CLTU"
 ChannelCoding: "BCH"
 HasRandomizer: 1
 Modulation: "PCM/PSK/PM"
 PCMFormat: "NRZ-L"
 ModulationIndex: 0.4000
 SubcarrierFrequency: 16000
 SymbolRate: 4000
 SamplesPerSymbol: 10

 Read-only properties:
 SubcarrierWaveform: "sine"

Specify the number of CLTUs and the transfer frame length.

numCLTUs = 10;
transferFramesLength = 8; % Number of octets in each transfer frame

Generate the CCSDS TC time-domain waveform for the transfer frames.

c = cell(1,numCLTUs); % Cell array to store the generated waveform for all CLTUs
for k=1:numCLTUs
 bits = randi([0 1],8*transferFramesLength,1); % Bits in the TC transfer frame
 waveform = ccsdsTCWaveform(bits,cfg);

3 Objects

3-6

 c{1,k} = waveform; % Waveform for each CLTU
end

Create a dsp.SpectrumAnalyzer System object to display the frequency spectrum of the generated
CCSDS TC time-domain waveform from the last CLTU.

scope = dsp.SpectrumAnalyzer;
scope.SampleRate = cfg.SamplesPerSymbol*cfg.SymbolRate;
scope(waveform) % Last CLTU spectrum display

References
[1] CCSDS 231.0-B-3. Blue Book. Issue 3. "TC Synchronization and Channel Coding."

Recommendation for Space Data System Standards. Washington, D.C.: CCSDS, September
2017.

[2] CCSDS 401.0-B-29. Blue Book. Issue 29. "Radio Frequency and Modulation Systems - Part 1".
Earth Stations and Spacecraft. Washington, D.C.: CCSDS, September 2019.

[3] Nguyen, T.M., W.L. Martin, and Hen-Geul Yeh. "Required Bandwidth, Unwanted Emission, and
Data Power Efficiency for Residual and Suppressed Carrier Systems - a Comparative Study."
IEEE transactions on electromagnetic compatibility 37, no. 1 (February 1995): 34-50. https://
doi.org/10.1109/15.350238.

 ccsdsTCConfig

3-7

https://www.mathworks.com/help/dsp/ref/dsp.spectrumanalyzer-system-object.html

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Properties LDPCCodewordLength and ChannelCoding must be provided as compile-time constant
inputs in code generation. Use coder.Constant (MATLAB Coder) object to convert the input
variable to a constant during code generation.

See Also
Functions
ccsdsTCIdealReceiver | ccsdsTCWaveform

Introduced in R2021a

3 Objects

3-8

p618SiteDiversityConfig
Create P.618 site diversity configuration object

Description
The p618SiteDiversityConfig object sets P.618 site diversity configuration parameters required
for the calculation of outage probability due to rain attenuation, as defined in the ITU-R P.618
recommendation [1].

Creation

Syntax
cfgSD = p618SiteDiversityConfig
cfgSD = p618SiteDiversityConfig(Name,Value)

Description

cfgSD = p618SiteDiversityConfig creates a P.618 site diversity configuration object with
default property values.

cfgSD = p618SiteDiversityConfig(Name,Value) specifies “Properties” on page 3-9 using
one or more name-value pair arguments. Enclose each property name in quotes. For example,
p618SiteDiversityConfig('Frequency',14.25e9,'ElevationAngle',[52.4099 52.4852])
configures a P.618 site diversity configuration object with a 14.25 GHz signal frequency and an
elevation angle for two sites as [52.4099 52.4852].

Properties
Frequency — Signal frequency
14.25e9 (default) | scalar in the range [1e9, 55e9]

Signal frequency in Hz, specified as a scalar in the range [1e9, 55e9].
Data Types: double | single

ElevationAngle — Elevation angle of two sites
[52.4099 52.4852] (default) | two-element vector of values in the range [0, 90]

Elevation angle of the two sites in degrees, specified as a two-element vector of values in the range
[0, 90].
Data Types: double | single

Latitude — Latitude of two sites
[25.768 25.463] (default) | two-element vector of values in the range [-90, 90]

 p618SiteDiversityConfig

3-9

Latitude of the two sites in degrees, specified as a two-element vector of values in the range [-90, 90].
A positive value corresponds to a North latitude, and a negative value corresponds to a South
latitude.
Data Types: double | single

Longitude — Longitude of two sites
[-80.205 -80.486] (default) | two-element vector of values in the range [-180, 180]

Longitude of the two sites in degrees, specified as a two-element vector of values in the range [-180,
180]. A positive value corresponds to East longitude, and a negative value corresponds to West
longitude.
Data Types: double | single

PolarizationTiltAngle — Polarization tilt angle for two sites
[0 0] (default) | two-element vector of values in the range [-90, 90]

Polarization tilt angle for the two sites in degrees, specified as a two-element vector of values in the
range [-90, 90].
Data Types: double | single

SiteDistance — Separation between two sites
44.0256 (default) | positive scalar

Separation between the two sites in km, specified as a positive scalar.
Data Types: double | single

AttenuationThreshold — Attenuation threshold on two links
[9 3] (default) | two-element vector

Attenuation threshold on the two links in dB, specified as a two-element vector. The attenuation
threshold on an earth space link is the maximum allowed attenuation on the path. Any attenuation
value above this property value is considered an outage in the link.
Data Types: double | single

Object Functions

Specific to This Object
p618SiteDiversityOutage Calculate outage probability due to rain attenuation with site diversity

Examples

Create P.618 Site Diversity Configuration Object

Create a default P.618 site diversity configuration object.

cfg = p618SiteDiversityConfig;

Specify the polarization tilt angles for two sites as [-90 90] degrees, separation between the two sites
as 50 km, and attenuation threshold on the two links as [9 9] dB.

3 Objects

3-10

cfg.PolarizationTiltAngle = [-90 90];
cfg.SiteDistance = 50;
cfg.AttenuationThreshold = [9 9];

Set the direction of each earth station.

cfg.Latitude = [30 60]; % North direction
cfg.Longitude = [120 150]; % East direction

Display the properties of the configuration object.

disp(cfg);

 p618SiteDiversityConfig with properties:

 Frequency: 1.4500e+10
 ElevationAngle: [52.4099 52.4852]
 Latitude: [30 60]
 Longitude: [120 150]
 PolarizationTiltAngle: [-90 90]
 SiteDistance: 50
 AttenuationThreshold: [9 9]

Calculate Outage Probability due to Rain Attenuation with Site Diversity

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and untar the MAT-files.

if ~exist('ITURDigitalMaps.tar.gz','file')
 url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz';
 websave('ITURDigitalMaps.tar.gz',url);
 untar('ITURDigitalMaps.tar.gz');
end

Create a P.618 site diversity configuration object with a signal frequency of 25 GHz.

cfgsd = p618SiteDiversityConfig;
cfgsd.Frequency = 25e9;

Specify the polarization tilt angles for two sites as [-90 90] degrees, separation between the two sites
as 50 km, and attenuation threshold on the two links as [9 9] dB.

cfgsd.PolarizationTiltAngle = [-90 90];
cfgsd.SiteDistance = 50;
cfgsd.AttenuationThreshold = [9 9];

Calculate the outage probability due to rain attenuation with site diversity.

outage = p618SiteDiversityOutage(cfgsd)

outage = 0.0338

References
[1] International Telecommunication Union, ITU-R Recommendation P.618 (12/2017).

 p618SiteDiversityConfig

3-11

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
p618Config

Functions
p618PropagationLosses | p618SiteDiversityOutage

Introduced in R2021a

3 Objects

3-12

p618Config
Create P.618 configuration object

Description
The p618Config object sets the P.618 configuration parameters required for the calculation of the
Earth-space propagation losses, cross-polarization discrimination, and sky noise temperature, as
defined in the ITU-R P.618 recommendation [1].

Creation

Syntax
cfgP618 = p618Config
cfgP618 = p618Config(Name,Value)

Description

cfgP618 = p618Config creates a P.618 configuration object with default property values.

cfgP618 = p618Config(Name,Value) specifies “Properties” on page 3-13 using one or more
name-value pair arguments. Enclose each property name in quotes. For example,
p618Config('GasAnnualExceedance',10,'AntennaEfficiency',0.65) configures a P.618
configuration object with 10% average annual time percentage of excess for gaseous attenuation and
0.65 antenna efficiency.

Properties
Frequency — Signal frequency
14.25e9 (default) | scalar in the range [1e9, 55e9]

Signal frequency in Hz, specified as a scalar in the range [1e9, 55e9].
Data Types: double | single

ElevationAngle — Elevation angle
31.0769 (default) | scalar in the range [5, 90]

Elevation angle in degrees, specified as a scalar in the range [5, 90].
Data Types: double | single

Latitude — Earth station latitude
51.5000 (default) | scalar in the range [-90, 90]

Earth station latitude in degrees, specified as a scalar in the range [-90, 90]. A positive value
corresponds to a North latitude, and a negative value corresponds to a South latitude.
Data Types: double | single

 p618Config

3-13

Longitude — Earth station longitude
-0.1400 (default) | scalar in the range [-180, 180]

Earth station longitude in degrees, specified as a scalar in the range [-180, 180]. A positive value
corresponds to East longitude, and a negative value corresponds to West longitude.
Data Types: double | single

GasAnnualExceedance — Average annual time percentage of excess for gaseous
attenuation
1 (default) | scalar in the range [0.1, 99]

Average annual time percentage of excess for the gaseous attenuation, specified as a scalar in the
range [0.1, 99]. This property calculates the gaseous attenuation, which satisfies the exceedance
condition, in terms of the percentage of an average year.

Note The fraction of time during which a preselected threshold is exceeded in an average year is
referred to as the annual time percentage of excess.

Data Types: double | single

CloudAnnualExceedance — Average annual time percentage of excess for cloud
attenuation
1 (default) | scalar in the range [0.1, 99]

Average annual time percentage of excess for the cloud attenuation, specified as a scalar in the range
[0.1, 99]. This property calculates the cloud attenuation, which satisfies the exceedance condition, in
terms of the percentage of an average year.
Data Types: double | single

RainAnnualExceedance — Average annual time percentage of excess for rain attenuation
1 (default) | scalar in the range [0.001, 5]

Average annual time percentage of excess for the rain attenuation, specified as a scalar in the range
[0.001, 5]. This property calculates the rain attenuation, which satisfies the exceedance condition, in
terms of the percentage of an average year.
Data Types: double | single

ScintillationAnnualExceedance — Average annual time percentage of excess for
tropospheric scintillation
1 (default) | scalar in the range [0.01, 50]

Average annual time percentage of excess for the tropospheric scintillation, specified as a scalar in
the range [0.01, 50]. This property calculates the tropospheric scintillation, which satisfies the
exceedance condition, in terms of the percentage of an average year.
Data Types: double | single

TotalAnnualExceedance — Average annual time percentage of excess for total attenuation
1 (default) | scalar in the range [0.001, 50]

3 Objects

3-14

Average annual time percentage of excess for the total attenuation, specified as a scalar in the range
[0.001, 50]. This property calculates the total attenuation, which satisfies the exceedance condition,
in terms of the percentage of an average year.
Data Types: double | single

PolarizationTiltAngle — Polarization tilt angle
0 (default) | scalar in the range [-90, 90]

Polarization tilt angle in degrees, specified as a scalar in the range [-90, 90].
Data Types: double | single

AntennaDiameter — Physical diameter of earth station antenna
1 (default) | positive scalar

Physical diameter of the earth station antenna in meters, specified as a positive scalar.
Data Types: double | single

AntennaEfficiency — Antenna efficiency of earth station antenna
0.5 (default) | positive scalar

Antenna efficiency of the earth station antenna, specified as a positive scalar.
Data Types: double | single

Object Functions

Specific to This Object
p618PropagationLosses Calculate Earth-space propagation losses, cross-polarization

discrimination, and sky noise temperature

Examples

Create P.618 Configuration Object

Create a default P.618 configuration object.

cfg = p618Config;

Specify the signal frequency as 25 GHz, elevation angle as 45 degrees, and antenna efficiency as
0.65. Set the time percentage of excess for the total attenuation per annum as 0.001.

cfg.Frequency = 25e9;
cfg.ElevationAngle = 45;
cfg.AntennaEfficiency = 0.65;
cfg.TotalAnnualExceedance = 0.001;

Set the earth station direction.

cfg.Latitude = 30; % North direction
cfg.Longitude = 120; % East direction

Display the properties of the configuration object.

 p618Config

3-15

disp(cfg)

 p618Config with properties:

 Frequency: 2.5000e+10
 ElevationAngle: 45
 Latitude: 30
 Longitude: 120
 GasAnnualExceedance: 1
 CloudAnnualExceedance: 1
 RainAnnualExceedance: 1
 ScintillationAnnualExceedance: 1
 TotalAnnualExceedance: 1.0000e-03
 PolarizationTiltAngle: 0
 AntennaDiameter: 1
 AntennaEfficiency: 0.6500

Calculate Propagation Losses, Cross-Polarization Discrimination, and Sky Noise
Temperature

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and unzip the MAT-files.

if ~exist('ITURDigitalMaps.tar.gz', 'file')
 url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz';
 websave('ITURDigitalMaps.tar.gz',url);
 untar('ITURDigitalMaps.tar.gz');
end

Create a default P.618 configuration object.

cfg = p618Config;

Specify the time percentage of excess for the rain attenuation per annum as 0.01 and the time
percentage of excess for the total attenuation per annum as 0.001.

cfg.RainAnnualExceedance = 0.01;
cfg.TotalAnnualExceedance = 0.001;

Calculate the propagation losses, cross-polarization discrimination, and sky noise temperature.

[pl,xpd,tsky] = p618PropagationLosses(cfg)

pl = struct with fields:
 Ag: 0.2269
 Ac: 0.4552
 Ar: 6.7981
 As: 0.2633
 At: 15.6091

xpd = 32.8876

tsky = 267.4689

3 Objects

3-16

Calculate Propagation Losses in Light Rainfall

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and unzip the MAT-files.

if ~exist('ITURDigitalMaps.tar.gz','file')
 url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz';
 websave('ITURDigitalMaps.tar.gz',url);
 untar('ITURDigitalMaps.tar.gz');
end

Create a P.618 configuration object that occupies a signal frequency of 20 GHz.

cfg = p618Config('Frequency',20e9);

Calculate the propagation losses in a light rainfall of 1 mm/hr with an earth station height of 0.75 km.

pl = p618PropagationLosses(cfg,'RainRate',1,'StationHeight',0.75)

pl = struct with fields:
 Ag: 0.7996
 Ac: 0.8793
 Ar: 0.0177
 As: 0.3187
 At: 1.7514

References
[1] International Telecommunication Union, ITU-R Recommendation P.618 (12/2017).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
p618SiteDiversityConfig

Functions
p618PropagationLosses | p618SiteDiversityOutage

Introduced in R2021a

 p618Config

3-17

satelliteScenario
Create satellite scenario object

Description
The satelliteScenario object represents a 3-D arena consisting of satellites, ground stations, and
the interactions between them. Use this object to model satellite constellations, model ground station
networks, perform access analyses between the satellites and the ground stations, and visualize the
results.

Creation
Syntax
sc = satelliteScenario
sc = satelliteScenario(startTime,stopTime,sampleTime)

Description

sc = satelliteScenario creates a default satellite scenario object.

sc = satelliteScenario(startTime,stopTime,sampleTime) sets the StartTime, StopTime,
and SampleTime properties to the values of startTime, stopTime, and sampleTime respectively.

Properties
StartTime — Start time of satellite scenario simulation in UTC
current time or earliest epoch defined in TLE data (default) | datetime scalar

Start time of the satellite scenario simulation in Universal Time Coordinated (UTC), specified as a
datetime scalar. If you specify the StartTime, StopTime, or SampleTime properties, the object no
longer updates StartTime property with further additions of satellites from TLE files.
Example: datetime(2020,5,11,12,35,38);
Data Types: datetime

StopTime — Stop time of satellite scenario simulation in UTC
StartTime + longest orbital period among the satellites in the scenario (default) | datetime scalar

Stop time of the satellite scenario simulation in UTC, specified as a datetime scalar. If you specify
the StartTime, StopTime, or SampleTime properties, the object no longer updates StartTime
property with further additions of satellites from TLE files.
Example: datetime(2020,5,11,12,35,38);
Data Types: datetime

SampleTime — Sample time of satellite scenario simulation
(StopTime - StartTime)/99 (default) | real-valued scalar

3 Objects

3-18

Sample time of the satellite scenario simulation, specified as a real-valued scalar. If you specify the
StartTime, StopTime, or SampleTime properties, the object no longer updates, the SampleTime
property updated with further additions of satellites from TLE files.
Data Types: double

Satellites — Satellites in the scenario
row vector of Satellite objects

This property is read-only.

Satellites in the scenario, returned as a vector of Satellite objects. To create a Satellite object
and add it to the satellite scenario, see the satellite object function.

GroundStations — Ground stations in scenario
row vector of GroundStation objects

This property is read-only.

Ground stations in the scenario, returned as a row vector of GroundStation objects. To create a
GroundStation object and add it to the satellite scenario, see the groundStation object function.

Autoshow — Graphics shown automatically
1 or true (default) | 0 or false

Option to automatically show graphics, specified as a numeric or logical value of 1 (true) or 0
(false). This property determines if entities added to the scenario are automatically shown in an
open satelliteScenarioViewer.

Object Functions
groundStation Add ground station to satellite scenario
satellite Add satellites to satellite scenario
satelliteScenarioViewer Create viewer for satellite scenario
play Play satellite scenario simulation results on viewer

Examples

Create Satellite Scenario with Custom Start and Stop Times

Specify the start time in the current time zone as yesterday. The simulation lasts for half a day.

startTime = datetime("yesterday","TimeZone","local");
stopTime = startTime + days(0.5);

Specify the sample time as 60 seconds. Create a satellite scenario object, specifying the start time,
stop time, and sample time.

sampleTime = 60;
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
 satelliteScenario with properties:

 StartTime: 22-Feb-2021 05:00:00

 satelliteScenario

3-19

 StopTime: 22-Feb-2021 17:00:00
 SampleTime: 60
 Viewers: [0x0 matlabshared.satellitescenario.Viewer]
 Satellites: []
 GroundStations: []
 AutoShow: 1

Add Satellites to Scenario Using Keplerian Elements

Create a satellite scenario with a start time of 02-June-2020 8:23:00 AM UTC, and the stop time set to
one day later. Set the simulation sample time to 60 seconds.

startTime = datetime(2020,6,02,8,23,0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add two satellites to the scenario using their Keplerian elements.

semiMajorAxis = [10000000; 15000000];
eccentricity = [0.01; 0.02];
inclination = [0; 10];
rightAscensionOfAscendingNode = [0; 15];
argumentOfPeriapsis = [0; 30];
trueAnomaly = [0; 20];

sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
 rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly)

sat =
 1×2 Satellite array with properties:

 Name
 ID
 ConicalSensors
 Gimbals
 Transmitters
 Receivers
 Accesses
 GroundTrack
 Orbit
 OrbitPropagator
 MarkerColor
 MarkerSize
 ShowLabel
 LabelFontSize
 LabelFontColor

View the satellites in orbit and the ground tracks over one hour.

show(sat)
groundTrack(sat,'LeadTime',3600)

ans=1×2 object
 1×2 GroundTrack array with properties:

3 Objects

3-20

 LeadTime
 TrailTime
 LineWidth
 TrailLineColor
 LeadLineColor
 VisibilityMode

play(sc)

Tips
• For correct visualization of all items in the scenario, save either the entire workspace or the

scenario containing all the elements.

 satelliteScenario

3-21

See Also
Objects
satellite | satelliteScenarioViewer

Functions
access | groundStation | hide | play | show

Topics
“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Constellation Access to a Ground Station”
“Comparison of Orbit Propagators”
“Modeling Satellite Constellations using Ephemeris Data”
“Estimate GNSS Receiver Position with Simulated Satellite Constellations”
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

3 Objects

3-22

skyplot
Plot satellite azimuth and elevation data

Syntax
skyplot(azdata,eldata)
skyplot(azdata,eldata,labeldata)
skyplot(status)
skyplot(___ ,Name,Value)

skyplot(parent, ___)
h = skyplot(___)

Description
skyplot(azdata,eldata) creates a sky plot using the azimuth and elevation data specified as
vectors in degrees. Azimuth angles are measured in degrees, clockwise-positive from the North
direction. Elevation angles are measured from the horizon line with 90 degrees being directly up. For
details about the sky plot figure elements, see “Main Sky Plot Elements” on page 3-29.

skyplot(azdata,eldata,labeldata) specifies data labels as a string array with elements
corresponding to each data point in the azdata and eldata inputs.

skyplot(status) specifies the azimuth and elevation data in a structure with fields
SatelliteAzimuth and SatelliteElevation.

skyplot(___ ,Name,Value) specifies options using one or more name-value arguments in addition
to the input arguments in previous syntaxes. The name-value arguments are properties of the
SkyPlotChart object. For a list of properties, see SkyPlotChart Properties.

skyplot(parent, ___) creates the sky plot in the figure, panel, or tab specified by parent.

h = skyplot(___) returns the sky plot as a SkyPlotChart object, h. Use h to modify the
properties of the chart after creating it. For a list of properties, see SkyPlotChart Properties.

Examples

View Satellite Positions from GNSS Sensor

Create a GNSS sensor model as a gnssSensor System Object™.

gnss = gnssSensor;

Specify the position and velocity of the sensor. Simulate the sensor readings and get status from
visible satellites. Store the azimuth and elevation angles as vectors.

pos = [0 0 0];
vel = [0 0 0];
[~, ~, status] = gnss(pos, vel);

 skyplot

3-23

satAz = status.SatelliteAzimuth;
satEl = status.SatelliteElevation;

Plot the satellite postions.

skyplot(satAz,satEl)

Plot Series of Satellite Positions Over Time

Animate the trajectory of satellite positions over time from a GNSS sensor.

Initialize the sky plot figure. Specify the relevant time-stepping information.

skyplotHandle = skyplot(0,0);

3 Objects

3-24

numHours = 12;
dt = 100;
numSeconds = numHours * 60 * 60;
numSimSteps = numSeconds/dt;

Create a GNSS sensor model as a gnssSensor (Navigation Toolbox) System Object™.

gnss = gnssSensor('SampleRate', 1/dt);

Iterate through the time steps and do the following:

• Simulate the sensor readings. Specify the zero postion and velocity for the stationary sensor.
• Store the azimuth and elevation angles as vectors.
• Set the AzimuthData and ElevationData properties of the SkyPlotChart handle directly.

for i = 1:numSimSteps

 [~, ~, status] = gnss([0 0 0],[0 0 0]);

 satAz = status.SatelliteAzimuth;
 satEl = status.SatelliteElevation;

 set(skyplotHandle,'AzimuthData',satAz,'ElevationData',satEl);

 drawnow
end

 skyplot

3-25

View Satellite Positions For Different Groups

Load the azimuth and elevation data from a logfile generated by an Adafruit® GPS satellite sensor.
The data provided in this example contains the azimuth and elevation of each satellite and the
pseudorandom noise (PRN) codes. Store these values as vectors.

load('gpsHWInfo','hwInfo')
satAz = hwInfo.SatelliteAzimuths;
satEl = hwInfo.SatelliteElevations;
prn = hwInfo.SatellitePRNs;

Separate the satellites based on the PRN codes. To correlate each position with a group, create a
categorical array. PRNs greater than 32 are part of the wide area augmentation system (WAAS).

isWAAS = (prn > 32);
constellationGroup = categorical(isWAAS,[false,true],{'GPS','WAAS'});

Visualize the satellites and specify the categorical groups in the GroupData name-value argument.
Specify the PRN as the label for each point. Show the legend.

skyplot(satAz,satEl,prn,'GroupData',constellationGroup)
legend('GPS','WAAS')

3 Objects

3-26

Input Arguments
azdata — Azimuth angles for visible satellite positions
n-element vector of angles

Azimuth angles for visible satellite positions, specified as an n-element vector of angles. n is the
number of visible satellite positions in the plot. Azimuth angles are measured in degrees, clockwise-
positive from the North direction.
Example: [25 45 182 356]
Data Types: double

eldata — Elevation angles for visible satellite positions
n-element vector of angles

Elevation angles for visible satellite positions, specified as an n-element vector of angles. n is the
number of visible satellite positions in the plot. Elevation angles are measured from the horizon line
with 90 degrees being directly up.
Example: [45 90 27 74]
Data Types: double

labeldata — Labels for visible satellite positions
n-element string array

 skyplot

3-27

Labels for visible satellite positions, specified as an n-element string array. n is the number of visible
satellite positions in the plot.
Example: ["G1" "G11" "G7" "G3"]
Data Types: string

status — Satellite status
structure array

Satellite status, specified as a structure array with fields SatelliteAzimuth and
SatelliteElevation. Typically, this status structure comes from a gnssSensor object, which
simulates satellite positions and velocities.
Example: gnss = gnssSensor; [~,~,status] = gnss(position,velocity)
Data Types: struct

parent — Parent container
Figure object | Panel object | Tab object | TiledChartLayout object | GridLayout object

Parent container, specified as a Figure, Panel, Tab, TiledChartLayout, or GridLayout object.

Output Arguments
h — Sky plot chart
SkyplotChart object

Sky plot chart, returned as a SkyplotChart object, which is a standalone visualization on page 3-
29. Use h to set properties on the sky plot chart. For more information, see SkyPlotChart Properties
(Navigation Toolbox).

3 Objects

3-28

More About
Main Sky Plot Elements

The main elements of the figure are:

• Azimuth axes — Specified by the azdata input argument, azimuth angle positions are measured
clockwise-positive from the North direction.

• Elevation axes —Specified by the eldata input argument, elevation angle positions are measured
from the horizon line with 90 degrees being directly up.

• Labels — Specified by the labeldata input argument as a string array with an element for each
point in the azdata and eldata vectors.

• Groups — Specified by the GroupData property, a categorical array defines the group for each
satellite position.

Standalone Visualization

A standalone visualization is a chart designed for a special purpose that works independently from
other charts. Unlike other charts such as plot and surf, a standalone visualization has a
preconfigured axes object built into it, and some customizations are not available. A standalone
visualization also has these characteristics:

• It cannot be combined with other graphics elements, such as lines, patches, or surfaces. Thus, the
hold command is not supported.

 skyplot

3-29

• The gca function can return the chart object as the current axes.
• You can pass the chart object to many MATLAB functions that accept an axes object as an input

argument. For example, you can pass the chart object to the title function.

See Also
Functions
polarscatter

Properties
SkyPlotChart Properties (Navigation Toolbox)

Objects
gnssSensor | nmeaParser

Introduced in R2021a

3 Objects

3-30

SkyPlotChart Properties
Sky plot chart appearance and behavior

Description
The SkyPlotChart properties control the appearance of a sky plot chart generated using the
skyplot function. To modify the chart appearance, use dot notation on the SkyPlotChart object:

h = skyplot;
h.AzimuthData = [45 120 295];
h.ElevationData = [10 45 60];
h.Labels = ["G1" "G4" "G11"];

Properties
Sky Plot Properties

AzimuthData — Azimuth angles for visible satellite positions
n-element vector of angles

Azimuth angles for visible satellite positions, specified as an n-element vector of angles. n is the
number of visible satellite positions in the plot. Angles are measured in degrees, clockwise-positive
from the North direction.
Example: [25 45 182 356]
Data Types: double

ElevationData — Elevation angles for visible satellite positions
n-element vector of angles

Elevation angles for visible satellite positions, specified as an n-element vector of angles. n is the
number of visible satellite positions in the plot. Angles are measured from the horizon line with 90
degrees being directly up.
Example: [45 90 27 74]
Data Types: double

LabelData — Labels for visible satellite positions
n-element string array

Labels for visible satellite positions, specified as an n-element string array. n is the number of visible
satellite positions in the plot.
Example: ["G1" "G11" "G7" "G3"]
Data Types: string

GroupData — Group for each satellite position
categorical array

Group for each satellite position, specified as a categorical array. Each group has a different color
label defined by the ColorOrder property.

 SkyPlotChart Properties

3-31

Example: [GPS GPS Galileo Galileo]
Data Types: double

ColorOrder — Color order
seven predefined colors (default) | three-column matrix of RGB triplets

Color order, specified as a three-column matrix of RGB triplets. This property defines the palette of
colors MATLAB uses to create plot objects such as Line, Scatter, and Bar objects. Each row of the
array is an RGB triplet. An RGB triplet is a three-element vector whose elements specify the
intensities of the red, green, and blue components of a color. The intensities must be in the range [0,
1]. This table lists the default colors.

Colors ColorOrder Matrix

 [0 0.4470 0.7410
 0.8500 0.3250 0.0980
 0.9290 0.6940 0.1250
 0.4940 0.1840 0.5560
 0.4660 0.6740 0.1880
 0.3010 0.7450 0.9330
 0.6350 0.0780 0.1840]

MATLAB assigns colors to objects according to their order of creation. For example, when plotting
lines, the first line uses the first color, the second line uses the second color, and so on. If there are
more lines than colors, then the cycle repeats.

You can also set the color order using the colororder function.

Label Properties

LabelFontSize — Font size of labels
scalar numeric value

Font size of labels, specified as a scalar numeric value. The default font depends on the specific
operating system and locale.
Example: h = skyplot(__,'LabelFontSize',12)
Example: h.LabelFontSize = 12

LabelFontSizeMode — Selection mode for font size of labels
'auto' (default) | 'manual'

Selection mode for the font size of labels, specified as one of these values:

• 'auto' — Font size specified by MATLAB. If you resize the axes to be smaller than the default
size, the font size can scale down to improve readability and layout.

• 'manual' — Font size specified manually. MATLAB does not scale the font size as the axes size
changes. To specify the font size, set the LabelFontSize property.

Chart Properties

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

3 Objects

3-32

Visibility of the SkyPlotChart object handle in the Children property of the parent, specified as
one of these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing unintended

changes to the UI by another function. To temporarily hide the handle during the execution of that
function, set the HandleVisibility to 'off'.

• 'callback' — Object handle is visible from within callbacks or functions invoked by callbacks,
but not from within functions invoked from the command line. This option blocks access to the
object at the command line, but allows callback functions to access it.

If the object is not listed in the Children property of the parent, then functions that obtain object
handles by searching the object hierarchy or querying handle properties cannot return it. This
includes get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on' to list all
object handles, regardless of their HandleVisibility property setting.

Layout — Layout options
empty LayoutOptions array (default) | TiledChartLayoutOptions object | GridLayoutOptions
object

Layout options, specified as a TiledChartLayoutOptions or GridLayoutOptions object. This
property is useful when the chart is either in a tiled chart layout or a grid layout.

To position the chart within the grid of a tiled chart layout, set the Tile and TileSpan properties on
the TiledChartLayoutOptions object. For example, consider a 3-by-3 tiled chart layout. The
layout has a grid of tiles in the center, and four tiles along the outer edges. In practice, the grid is
invisible and the outer tiles do not take up space until you populate them with axes or charts.

This code places the chart c in the third tile of the grid..

c.Layout.Tile = 3;

 SkyPlotChart Properties

3-33

To make the chart span multiple tiles, specify the TileSpan property as a two-element vector. For
example, this chart spans 2 rows and 3 columns of tiles.

c.Layout.TileSpan = [2 3];

To place the chart in one of the surrounding tiles, specify the Tile property as 'north', 'south',
'east', or 'west'. For example, setting the value to 'east' places the chart in the tile to the right
of the grid.

c.Layout.Tile = 'east';

To place the chart into a layout within an app, specify this property as a GridLayoutOptions object.
For more information about working with grid layouts in apps, see uigridlayout.

If the chart is not a child of either a tiled chart layout or a grid layout (for example, if it is a child of a
figure or panel) then this property is empty and has no effect.

Parent — Parent container
Figure object | Panel object | Tab object | TiledChartLayout object | GridLayout object

Parent container, specified as a Figure, Panel, Tab, TiledChartLayout, or GridLayout object.

Marker Properties

MarkerEdgeAlpha — Marker edge transparency
1 (default) | scalar in range [0,1] | 'flat'

Marker edge transparency, specified as a scalar in the range [0,1] or 'flat'. A value of 1 is
opaque and 0 is completely transparent. Values between 0 and 1 are semitransparent.

To set the edge transparency to a different value for each point in the plot, set the AlphaData
property to a vector the same size as the XData property, and set the MarkerEdgeAlpha property to
'flat'.

MarkerEdgeColor — Marker outline color
'flat' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color name, or
a short name. The value of 'auto' uses the same color as the Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]. For example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and the hexadecimal color codes.

3 Objects

3-34

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

This table shows the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in
many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceAlpha — Marker face transparency
0.6 (default) | scalar in range [0,1] | 'flat'

Marker face transparency, specified as a scalar in the range [0,1] or 'flat'. A value of 1 is opaque
and 0 is completely transparent. Values between 0 and 1 are partially transparent.

To set the marker face transparency to a different value for each point, set the AlphaData property
to a vector the same size as the XData property, and set the MarkerFaceAlpha property to 'flat'.

MarkerFaceColor — Marker fill color
'flat' (default) | 'auto' | 'none' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'flat', 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'flat' option uses the CData values. The 'auto' option uses the same
color as the Color property for the axes.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

 SkyPlotChart Properties

3-35

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

MarkerSizeData — Marker size
100 (default) | positive scalar | vector of positive values

Marker size, specified as a positive scalar or vector of positive values in points, where one point =
1/72 of an inch. If specified as a vector, the vector must be of the same length as AzimuthData.

Position

PositionConstraint — Position to hold constant
'outerposition' | 'innerposition'

3 Objects

3-36

Position property to hold constant when adding, removing, or changing decorations, specified as one
of the following values:

• 'outerposition' — The OuterPosition property remains constant when you add, remove, or
change decorations such as a title or an axis label. If any positional adjustments are needed,
MATLAB adjusts the InnerPosition property.

• 'innerposition' — The InnerPosition property remains constant when you add, remove, or
change decorations such as a title or an axis label. If any positional adjustments are needed,
MATLAB adjusts the OuterPosition property.

Note Setting this property has no effect when the parent container is a TiledChartLayout.

OuterPosition — Outer size and location
[0 0 1 1] (default) | four-element vector

Outer size and location of the skyplot within the parent container (typically a figure, panel, or tab),
specified as a four-element vector of the form [left bottom width height]. The outer position
includes the colorbar, title, and axis labels.

• The left and bottom elements define the distance from the lower-left corner of the container to
the lower-left corner of the skyplot.

• The width and height elements are the skyplot dimensions, which include the skyplot cells, plus
a margin for the surrounding text and colorbar.

The default value of [0 0 1 1] covers the whole interior of the container. The units are normalized
relative to the size of the container. To change the units, set the Units property.

Note Setting this property has no effect when the parent container is a TiledChartLayout.

InnerPosition — Inner size and location
[0.1300 0.1100 0.7750 0.8114] (default) | four-element vector

Inner size and location of the skyplot within the parent container (typically a figure, panel, or tab),
specified as a four-element vector of the form [left bottom width height]. The inner position
does not include the colorbar, title, or axis labels.

• The left and bottom elements define the distance from the lower-left corner of the container to
the lower-left corner of the skyplot.

• The width and height elements are the skyplot dimensions, which include only the skyplot cells.

Note Setting this property has no effect when the parent container is a TiledChartLayout.

Position — Inner size and location
four-element vector

Inner size and location of the skyplot within the parent container (typically a figure, panel, or tab),
specified as a four-element vector of the form [left bottom width height]. This property is
equivalent to the InnerPosition property.

 SkyPlotChart Properties

3-37

Note Setting this property has no effect when the parent container is a TiledChartLayout.

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'points' | 'pixels' | 'characters'

Position units, specified as one of these values.

Units Description
'normalized' (default) Normalized with respect to the container, which

is typically the figure or a panel. The lower left
corner of the container maps to (0,0), and the
upper right corner maps to (1,1).

'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default uicontrol font of the

graphics root object:

• Character width = width of letter x.
• Character height = distance between the

baselines of two lines of text.
'points' Typography points. One point equals 1/72 inch.
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows® and Macintosh systems:

• On Windows systems, a pixel is 1/96th of an
inch.

• On Macintosh systems, a pixel is 1/72nd of an
inch.

On Linux® systems, the size of a pixel is
determined by your system resolution.

When specifying the units as a name-value argument during object creation, you must set the Units
property before specifying the properties that you want to use these units, such as OuterPosition.

Visible — State of visibility
'on' (default) | on/off logical value

State of visibility, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value
of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this
property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• 'on' — Display the skyplot.
• 'off' — Hide the skyplot without deleting it. You can still access the properties of an invisible

SkyPlotChart object.

3 Objects

3-38

See Also
Functions
polarscatter | skyplot

Objects
gnssSensor | nmeaParser

Introduced in R2021a

 SkyPlotChart Properties

3-39

Satellite
Satellite object belonging to satellite scenario

Description
Satellite defines a satellite object belonging to a satellite scenario.

Creation
You can create Satellite objects using the satellite method of satelliteScenario.

Properties
Orbit — Orbit graphic
Orbit object

Orbit object parameters for a satellite, specified as an orbit object. Only these object properties are
relevant for this function.

LineColor — Color of orbit
[1,0,0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'

Color of the orbit, specified as an RGB triplet, hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'

3 Objects

3-40

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineWidth — Visual width of orbit
1 (default) | scalar in the range (0, 10)

Visual width of orbit in pixels, specified as a scalar in the range (0, 10).

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

VisibilityMode — Visibility mode of orbit graphic
'inherit' (default) | 'manual'

Visibility mode of orbit graphic, specified as one of these values:

• 'inherit' — Visibility of the graphic matches that of the parent
• 'manual' — Visibility of the graphic is not inherited and is independent of that of the parent

Data Types: char | string

Accesses — Access analysis objects
row vector of Access objects

You can set this property only when calling Satellite. After you call Satellite, this property is read-
only.

Access analysis objects, specified as a row vector of Access objects.

 Satellite

3-41

MarkerColor — Color of marker
[1 0 0] (default) | RGB triplet | string scalar of color name | character vector of
color name

Color of the marker, specified as a comma-separated pair consisting of 'MarkerColor' and either an
RGB triplet or a string or character vector of a color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerSize — Size of marker
10 (default) | positive scalar less than 30

3 Objects

3-42

Size of the marker, specified as a comma-separated pair consisting of 'MarkerSize' and a real
positive scalar less than 30. The unit is in pixels.

ShowLabel — State of Satellite label visibility
true or 1 (default) | false or 0

State of Satellite label visibility, specified as a comma-separated pair consisting of 'ShowLabel' and
numerical or logical value of 1 (true) or 0 (false).
Data Types: logical

LabelFontSize — Font size of Satellite label
15 (default) | positive scalar less than 30

Font size of the Satellite label, specified as a comma-separated pair consisting of 'LabelFontSize'
and a positive scalar less than 30.

LabelFontColor — Font color of Satellite label
[1,0,0] (default) | RGB triplet | string scalar of color name | character vector of
color name

Font color of the Satellitelabel, specified as a comma-separated pair consisting of
'LabelFontColor' and either an RGB triplet or a string or character vector of a color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

 Satellite

3-43

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Name — Satellite name
"Satellite idx" (default) | string scalar | string vector | character vector | cell array of character
vectors

You can set this property only when calling Satellite. After you call Satellite, this property is read-
only.

Satellite name, specified as a comma-separated pair consisting of 'Name' and a string scalar, string
vector, character vector or a cell array of character vectors.

• If only one Satellite is added, specify Name as a string scalar or a character vector.
• If multiple Satellites are added, specify Name as a string vector or a cell array of character

vectors. The number of elements in the string vector or cell array must be equal to the number of
satellites being added.

In the default value, idx is the count of the Satellite added by the Satellite object function. If
another Satellite of the same name exists, a suffix _idx2 is added, where idx2 is an integer that is
incremented by 1 starting from 1 until the name duplication is resolved.
Data Types: char | string

ID — Satellite ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.

Satellite ID assigned by the simulator, specified as a positive scalar.

ConicalSensors — Conical sensors
row vector of conical sensors

You can set this property only when calling conicalSensor. After you call conicalSensor, this
property is read-only.

Conical sensors attached to the Satellite, specified as a row vector of conical sensors.

Gimbals — Gimbals
row vector of Gimbal objects

You can set this property only when calling gimbal. After you call gimbal, this property is read-only.

Gimbals attached to the Satellite, specified as the comma-separated pair consisting of 'Gimbals'
and a row vector of Gimbal objects.

3 Objects

3-44

OrbitPropagator — Name of orbit propagator
"sgp4" (default) | "two-body-keplerian" | "sdp4" | "ephemeris"

You can set this property when calling satellite only. After you call satellite, this property is
read-only.

Name of the orbit propagator used for propagating satellite position and velocity, specified as the
comma-separated pair consisting of 'OrbitPropagator' and either "two-body-keplerian",
"sgp4", "sdp4", or "ephemeris".

Dependencies

OrbitPropagator is not available for ephemeris data inputs (timetable or timeseries). In these
cases, satellite ignores this name-value pair.
Data Types: string | char

Receivers — Receivers attached to Satellite
row vector of Receiver objects

You can set this property only when calling receiver. After you call receiver, this property is read-
only.

Receivers attached to the Satellite, specified as a row vector of Receiver objects.

Transmitters — Transmitters attached to Satellite
row vector of Transmitter objects

You can set this property only when calling transmitter. After you call transmitter, this property
is read-only.

Transmitters attached to the Satellite, specified as a row vector of Transmitter objects.

GroundTrack — Ground track of the Satellite
row vector of GroundTrack objects

You can set this property only when calling groundTrack. After you call groundTrack, this property
is read-only.

Ground track of the Satellite, specified as a row vector of GroundTrack objects.

Object Functions
access Add access analysis objects to satellite scenario
states Position and velocity of satellite
conicalSensor Add conical sensor to satellite scenario
pointAt Target at which entity must be pointed
transmitter Add transmitter to satellite scenario
gimbal Add gimbal to satellite or ground station
receiver Add receiver to satellite scenario
show Show object in satellite scenario viewer
aer Calculate azimuth angle, elevation angle, and range in NED frame from another

satellite or ground station
hide Hides satellite scenario entity from viewer
groundTrack Add ground track object to satellite in scenario

 Satellite

3-45

orbitalElements Orbital elements of satellites in scenario

See Also
Objects
access | groundStation | satelliteScenario | satelliteScenarioViewer

Functions
hide | play | show

Topics
“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Constellation Access to a Ground Station”
“Comparison of Orbit Propagators”
“Modeling Satellite Constellations using Ephemeris Data”
“Estimate GNSS Receiver Position with Simulated Satellite Constellations”
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

3 Objects

3-46

GroundStation
Ground station object belonging to satellite scenario

Description
The GroundStation object defines a ground station object belonging to a satellite scenario.

Creation
You can create GroundStation object using the groundStation object function of the
satelliteScenario object.

Properties
Name — GroundStation name
"GroundStation idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling GroundStation. After you call GroundStation, this
property is read-only.

GroundStation name, specified as a comma-separated pair consisting of 'Name' and a string scalar,
string vector, character vector or a cell array of character vectors.

• If only one GroundStation is added, specify Name as a string scalar or a character vector.
• If multiple GroundStations are added, specify Name as a string vector or a cell array of character

vectors. The number of elements in the string vector or cell array must be equal to the number of
satellites being added.

In the default value, idx is the count of the GroundStation added by the GroundStation object
function. If another GroundStation of the same name exists, a suffix _idx2 is added, where idx2 is an
integer that is incremented by 1 starting from 1 until the name duplication is resolved.
Data Types: char | string

ID — GroundStation ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.

GroundStation ID assigned by the simulator, specified as a positive scalar.

Latitude — Geodetic latitude of ground stations
42.3001 (default) | scalar | row vector

You can set this property only when calling GroundStation. After you call GroundStation, this
property is read-only.

Geodetic latitude of ground stations, specified as a scalar. Values must be in the range [-90, 90].

 GroundStation

3-47

• If you add only one ground station, specify Latitude as a scalar double.
• If you add multiple ground stations, specify Latitude as a vector double whose length is equal to

the number of ground stations being added.

When latitude and longitude are specified as lat, lon inputs to GroundStation, Latitude specified
as a name-value argument takes precedence.
Data Types: double

Longitude — Geodetic longitude of ground stations
-71.3504 (default) | scalar | row vector

You can set this property only when calling GroundStation. After you call GroundStation, this
property is read-only.

Geodetic longitude of ground stations, specified as a scalar or a vector. Values must be in the range
[-180, 180].

• If you add only one ground station, specify longitude as a scalar.
• If you add multiple ground stations, specify longitude as a vector whose length is equal to the

number of ground stations being added.

When longitude and longitude are specified as lat, lon inputs to GroundStation, longitude
specified as a name-value argument takes precedence.
Data Types: double

Altitude — Altitude of ground station
0 m (default) | scalar | vector

You can set this property only when calling GroundStation. After you call GroundStation, this
property is read-only.

Altitude of ground stations, specified as a scalar or a vector.

• If you specify Altitude as a scalar, the value is assigned to each ground station in the
GroundStation.

• If you specify Altitude as a vector, the vector length must be equal to the number of ground
stations in the GroundStation.

When latitude and longitude are specified as lat, lon inputs to GroundStation, Latitude specified
as a name-value argument takes precedence.
Data Types: double

MinElevationAngle — Minimum elevation angle
0 (default) | scalar | vector

Minimum elevation angle of a satellite for the satellite to be visible from the ground station, specified
as a scalar or row vector. Values must be in the range [–90, 90]. For access and link closure to be
possible, the elevation angle must be at least equal to the value specified in MinElevationAngle.

• If you specify MinElevationAngle as a scalar, the value is assigned to each ground station in the
GroundStation.

3 Objects

3-48

• If you specify MinElevationAngle as a vector, the vector length must be equal to the number of
ground stations in the GroundStation.

Data Types: double

Accesses — Access analysis objects
row vector of Access objects

You can set this property only when calling GroundStation. After you call GroundStation, this
property is read-only.

Access analysis objects, specified as a row vector of Access objects.

ConicalSensors — Conical sensors
row vector of conical sensors

You can set this property only when calling conicalSensor. After you call conicalSensor, this
property is read-only.

Conical sensors attached to the GroundStation, specified as a row vector of conical sensors.

Gimbals — Gimbals
row vector of Gimbal objects

You can set this property only when calling gimbal. After you call gimbal, this property is read-only.

Gimbals attached to the GroundStation, specified as the comma-separated pair consisting of
'Gimbals' and a row vector of Gimbal objects.

Transmitters — Transmitters attached to GroundStation
row vector of Transmitter objects

You can set this property only when calling transmitter. After you call transmitter, this property
is read-only.

Transmitters attached to the GroundStation, specified as a row vector of Transmitter objects.

Receivers — Receivers attached to GroundStation
row vector of Receiver objects

You can set this property only when calling receiver. After you call receiver, this property is read-
only.

Receivers attached to the GroundStation, specified as a row vector of Receiver objects.

MarkerColor — Color of marker
[1 0 0] (default) | RGB triplet | string scalar of color name | character vector of
color name

Color of the marker, specified as a comma-separated pair consisting of 'MarkerColor' and either an
RGB triplet or a string or character vector of a color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

 GroundStation

3-49

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerSize — Size of marker
10 (default) | positive scalar less than 30

Size of the marker, specified as a comma-separated pair consisting of 'MarkerSize' and a real
positive scalar less than 30. The unit is in pixels.

ShowLabel — State of GroundStation label visibility
true or 1 (default) | false or 0

State of GroundStation label visibility, specified as a comma-separated pair consisting of
'ShowLabel' and numerical or logical value of 1 (true) or 0 (false).

3 Objects

3-50

Data Types: logical

LabelFontSize — Font size of GroundStation label
15 (default) | positive scalar less than 30

Font size of the GroundStation label, specified as a comma-separated pair consisting of
'LabelFontSize' and a positive scalar less than 30.

LabelFontColor — Font color of GroundStation label
[1,0,0] (default) | RGB triplet | string scalar of color name | character vector of
color name

Font color of the GroundStationlabel, specified as a comma-separated pair consisting of
'LabelFontColor' and either an RGB triplet or a string or character vector of a color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'

 GroundStation

3-51

RGB Triplet Hexadecimal Color Code Appearance
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Object Functions
access Add access analysis objects to satellite scenario
conicalSensor Add conical sensor to satellite scenario
transmitter Add transmitter to satellite scenario
receiver Add receiver to satellite scenario
gimbal Add gimbal to satellite or ground station
show Show object in satellite scenario viewer
aer Calculate azimuth angle, elevation angle, and range in NED frame from another

satellite or ground station
hide Hides satellite scenario entity from viewer

Examples

Add Ground stations to Scenario and Visualize Access Intervals

Create satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020, 5, 1, 11, 36, 0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime, stopTime, sampleTime);
lat = [10];
lon = [-30];
gs = groundStation(sc, lat, lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;
eccentricity = 0;
inclination = 10;
rightAscensionOfAscendingNode = 0;
argumentOfPeriapsis = 0;
trueAnomaly = 0;
sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
 rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly);

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat, gs);
intvls = accessIntervals(ac)

intvls=8×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 _____________ __________________ ______________ ____________________ ____________________ ________ __________ ________

 "Satellite 2" "Ground station 1" 1 01-May-2020 11:36:00 01-May-2020 12:04:00 1680 1 1

3 Objects

3-52

 "Satellite 2" "Ground station 1" 2 01-May-2020 14:20:00 01-May-2020 15:11:00 3060 1 2
 "Satellite 2" "Ground station 1" 3 01-May-2020 17:27:00 01-May-2020 18:18:00 3060 3 3
 "Satellite 2" "Ground station 1" 4 01-May-2020 20:34:00 01-May-2020 21:25:00 3060 4 4
 "Satellite 2" "Ground station 1" 5 01-May-2020 23:41:00 02-May-2020 00:32:00 3060 5 5
 "Satellite 2" "Ground station 1" 6 02-May-2020 02:50:00 02-May-2020 03:39:00 2940 6 6
 "Satellite 2" "Ground station 1" 7 02-May-2020 05:59:00 02-May-2020 06:47:00 2880 7 7
 "Satellite 2" "Ground station 1" 8 02-May-2020 09:06:00 02-May-2020 09:56:00 3000 8 9

Play the scenario to visualize the ground stations.

play(sc)

See Also
Objects
satelliteScenario | satelliteScenarioViewer

 GroundStation

3-53

Functions
access | conicalSensor | groundStation | hide | play | receiver | satellite | show |
transmitter

Topics
“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Constellation Access to a Ground Station”
“Comparison of Orbit Propagators”
“Modeling Satellite Constellations using Ephemeris Data”
“Estimate GNSS Receiver Position with Simulated Satellite Constellations”
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

3 Objects

3-54

Access
Access analysis object belonging to scenario

Description
The Access object defines an access analysis object belonging to a Satellite, GroundStation or
ConicalSensor.

Creation
You can create an Access object using the access object function of GroundStation or
Satellite.

Properties
Sequence — Satellite, ground station, or conical sensor ID
row vector of positive real numbers

You can set this property only when calling access. After you call access, this property is read-only.

Satellite, ground station, or conical sensor ID defining the nodes of access analysis.

LineWidth — Visual width of access analysis object
1 (default) | scalar

Visual width of access analysis object in pixels, specified as a scalar in the range (0, 10).

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LineColor — Color of analysis line
[0.5 0 1] (default) | RGB triplet | hexadecimal color code | color name | short name

Color of access analysis line, specified as an RGB triplet, hexadecimal color code, a color name, or a
short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

 Access

3-55

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

Object Functions
show Show object in satellite scenario viewer
accessStatus Status of access between first and last node defining access analysis
accessIntervals Intervals during which access status is true
accessPercentage Percentage of time when access exists between first and last node defining

access analysis
hide Hides satellite scenario entity from viewer

Examples

Add Ground stations to Scenario and Visualize Access Intervals

Create satellite scenario and add ground stations from latitudes and longitudes.

3 Objects

3-56

startTime = datetime(2020, 5, 1, 11, 36, 0);
stopTime = startTime + days(1);
sampleTime = 60;
sc = satelliteScenario(startTime, stopTime, sampleTime);
lat = [10];
lon = [-30];
gs = groundStation(sc, lat, lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;
eccentricity = 0;
inclination = 10;
rightAscensionOfAscendingNode = 0;
argumentOfPeriapsis = 0;
trueAnomaly = 0;
sat = satellite(sc, semiMajorAxis, eccentricity, inclination, ...
 rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly);

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat, gs);
intvls = accessIntervals(ac)

intvls=8×8 table
 Source Target IntervalNumber StartTime EndTime Duration StartOrbit EndOrbit
 _____________ __________________ ______________ ____________________ ____________________ ________ __________ ________

 "Satellite 2" "Ground station 1" 1 01-May-2020 11:36:00 01-May-2020 12:04:00 1680 1 1
 "Satellite 2" "Ground station 1" 2 01-May-2020 14:20:00 01-May-2020 15:11:00 3060 1 2
 "Satellite 2" "Ground station 1" 3 01-May-2020 17:27:00 01-May-2020 18:18:00 3060 3 3
 "Satellite 2" "Ground station 1" 4 01-May-2020 20:34:00 01-May-2020 21:25:00 3060 4 4
 "Satellite 2" "Ground station 1" 5 01-May-2020 23:41:00 02-May-2020 00:32:00 3060 5 5
 "Satellite 2" "Ground station 1" 6 02-May-2020 02:50:00 02-May-2020 03:39:00 2940 6 6
 "Satellite 2" "Ground station 1" 7 02-May-2020 05:59:00 02-May-2020 06:47:00 2880 7 7
 "Satellite 2" "Ground station 1" 8 02-May-2020 09:06:00 02-May-2020 09:56:00 3000 8 9

Play the scenario to visualize the ground stations.

play(sc)

 Access

3-57

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
conicalSensor | groundStation | hide | play | receiver | satellite | show | transmitter

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

3 Objects

3-58

ConicalSensor
Conical sensor object belonging to satellite scenario

Description
ConicalSensor defines a conical sensor object belonging to a satellite scenario.

Creation
You can create the ConicalSensor object using the conicalSensor object function of the
Satellite or GroundStation objects.

Properties
Name — ConicalSensor name
"ConicalSensor idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling ConicalSensor. After you call ConicalSensor, this property
is read-only.

ConicalSensor name, specified as a comma-separated pair consisting of 'Name' and a string scalar,
string vector, character vector or a cell array of character vectors.

• If only one ConicalSensor is added, specify Name as a string scalar or a character vector.
• If multiple ConicalSensors are added, specify Name as a string vector or a cell array of character

vectors. The number of elements in the string vector or cell array must be equal to the number of
satellites being added.

In the default value, idx is the count of the ConicalSensor added by the ConicalSensor object
function. If another ConicalSensor of the same name exists, a suffix _idx2 is added, where idx2 is an
integer that is incremented by 1 starting from 1 until the name duplication is resolved.
Data Types: char | string

ID — ConicalSensor ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.

ConicalSensor ID assigned by the simulator, specified as a positive scalar.

MountingLocation — Mounting location with respect to parent
[0; 0; 0] (default) | three-element row vector of positive numbers

Mounting location with respect to the parent object, specified as a three-element row vector of
positive numbers in meters. The position vector is specified in the body frame of the input parent.

 ConicalSensor

3-59

MaxViewAngle — Field of view angle
30 (default) | scalar in the range [0, 180]

Field of view angle, specified as a scalar in the range [0, 180]. Units are in degrees.

Accesses — Access analysis objects
row vector of Access objects

You can set this property only when calling ConicalSensor. After you call ConicalSensor, this property
is read-only.

Access analysis objects, specified as a row vector of Access objects.

FieldOfView — Field of view objects
row vector of FieldOfView objects

You can set this property only when calling ConicalSensor. After you call ConicalSensor, this property
is read-only.

Field of view objects, specified as a scalar of FieldOfView objects.

Object Functions
access Add access analysis objects to satellite scenario
fieldOfView Visualize field of view of conical sensor

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | groundStation | hide | play | receiver | show | transmitter

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

3 Objects

3-60

Transmitter
Transmitter object belonging to satellite scenario

Description
Transmitter defines a transmitter object belonging to a satellite scenario.

Creation
You can create Transmitter objects using the transmitter method of satellite, groundStation,
or gimbal.

Properties
Name — Transmitter name
"Transmitter idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling Transmitter. After you call Transmitter, this property is
read-only.

Transmitter name, specified as a comma-separated pair consisting of 'Name' and a string scalar,
string vector, character vector or a cell array of character vectors.

• If only one Transmitter is added, specify Name as a string scalar or a character vector.
• If multiple Transmitters are added, specify Name as a string vector or a cell array of character

vectors. The number of elements in the string vector or cell array must be equal to the number of
satellites being added.

In the default value, idx is the count of the Transmitter added by the Transmitter object function. If
another Transmitter of the same name exists, a suffix _idx2 is added, where idx2 is an integer that is
incremented by 1 starting from 1 until the name duplication is resolved.
Data Types: char | string

ID — Transmitter ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.

Transmitter ID assigned by the simulator, specified as a positive scalar.

MountingLocation — Mounting location with respect to parent
[0; 0; 0] (default) | three-element row vector of positive numbers

Mounting location with respect to the parent object, specified as a three-element row vector of
positive numbers in meters. The position vector is specified in the body frame of the input parent.

 Transmitter

3-61

MountingAngles — Mounting orientation with respect to parent object
[0; 0; 0] (default) | three-element row vector of positive numbers

Mounting orientation with respect to parent object, specified as a three-element row vector of
positive numbers in degrees. The elements of the vector correspond to yaw, pitch, and roll in that
order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.
Example: [0; 30; 60]

Antenna — Antenna object associated with Transmitter
gaussianAntenna object

Antenna object associated with the Transmitter, specified as an antenna object. The default gaussian
antenna has a dish diameter of 1 m and an aperture efficiency of 0.65.

SystemLoss — Total loss in Transmitter
5 (default) | positive scalar

Total loss in the Transmitter, specified as a real positive scalar. Units are in dB.

Frequency — Transmitter frequency
14e9 (default) | positive scalar

Transmitter frequency, specified as a positive scalar. Units are in Hz.

BitRate — Bit rate of transmitter
10 (default) | real positive scalar

Bit rate of the transmitter, specified as a real positive scalar. Units are in Mbps.

Power — Power of high power amplifier
12 (default) | real positive scalar

Power of the high power amplifier, specified as a real positive scalar. Units are in dbW.

Links — Link analysis objects
row vector of Link objects

You can set this property when calling Transmitter only. After you call Transmitter, this property is
read-only.

Link analysis objects, specified as a row vector Link objects.

Object Functions
gaussianAntenna Add Gaussian antennas
link Add link analysis objects to transmitter

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | groundStation | hide | play | show

3 Objects

3-62

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 Transmitter

3-63

Receiver
Receiver object belonging to satellite scenario

Description
The Receiver object defines a receiver object function belonging to the satellite scenario.

Creation
You can create Receiver object using the receiver object function of the Satellite,
GroundStation, or Gimbal object.

Properties
Name — Receiver name
"Receiver idx" (default) | string scalar | string vector | character vector | cell array of character
vectors

You can set this property only when calling Receiver. After you call Receiver, this property is read-
only.

Receiver name, specified as a comma-separated pair consisting of 'Name' and a string scalar, string
vector, character vector or a cell array of character vectors.

• If only one Receiver is added, specify Name as a string scalar or a character vector.
• If multiple Receivers are added, specify Name as a string vector or a cell array of character

vectors. The number of elements in the string vector or cell array must be equal to the number of
satellites being added.

In the default value, idx is the count of the Receiver added by the Receiver object function. If
another Receiver of the same name exists, a suffix _idx2 is added, where idx2 is an integer that is
incremented by 1 starting from 1 until the name duplication is resolved.
Data Types: char | string

ID — Receiver ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.

Receiver ID assigned by the simulator, specified as a positive scalar.

MountingLocation — Mounting location with respect to parent
[0; 0; 0] (default) | three-element row vector of positive numbers

Mounting location with respect to the parent object, specified as a three-element row vector of
positive numbers in meters. The position vector is specified in the body frame of the input parent.

3 Objects

3-64

MountingAngles — Mounting orientation with respect to parent object
[0; 0; 0] (default) | three-element row vector of positive numbers

Mounting orientation with respect to parent object, specified as a three-element row vector of
positive numbers in degrees. The elements of the vector correspond to yaw, pitch, and roll in that
order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.
Example: [0; 30; 60]

Antenna — Antenna object associated with Receiver
gaussianAntenna object

Antenna object associated with the Receiver, specified as an antenna object. The default gaussian
antenna has a dish diameter of 1 m and an aperture efficiency of 0.65.

SystemLoss — Total loss in Receiver
5 (default) | positive scalar

Total loss in the Receiver, specified as a real positive scalar. Units are in dB.

GainToNoiseTemperatureRatio — Gain to noise temperature ratio
3 (default) | scalar

Gain to noise temperature ratio of the antenna, specified as the comma-separated pair consisting of
'GainToNoiseTemperatureRatio' and a scalar. Units are in dB/K.

RequiredEbNo — Lowest Eb/No necessary for link closure
10 (default) | positive scalar

Lowest energy per bit to noise power spectral density ratio (Eb/No) necessary for link closure,
specified as the comma-separated pair consisting of 'RequiredEbNo' and a positive scalar. Units
are in dB.

Object Functions
gaussianAntenna Add Gaussian antennas

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | groundStation | hide | link | play | show

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 Receiver

3-65

Gimbal
Gimbal object belonging to satellite scenario

Description
The Gimbal defines a gimbal object belonging to a satellite scenario.

Creation
You can create a Gimbal object using the gimbal object function of the Satellite or
GroundStation.

Properties
Name — Gimbal name
"Gimbal idx" (default) | string scalar | string vector | character vector | cell array of character
vectors

You can set this property only when calling Gimbal. After you call Gimbal, this property is read-only.

Gimbal name, specified as a comma-separated pair consisting of 'Name' and a string scalar, string
vector, character vector or a cell array of character vectors.

• If only one Gimbal is added, specify Name as a string scalar or a character vector.
• If multiple Gimbals are added, specify Name as a string vector or a cell array of character vectors.

The number of elements in the string vector or cell array must be equal to the number of satellites
being added.

In the default value, idx is the count of the Gimbal added by the Gimbal object function. If another
Gimbal of the same name exists, a suffix _idx2 is added, where idx2 is an integer that is incremented
by 1 starting from 1 until the name duplication is resolved.
Data Types: char | string

ID — Gimbal ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.

Gimbal ID assigned by the simulator, specified as a positive scalar.

MountingLocation — Mounting location with respect to parent
[0; 0; 0] (default) | three-element row vector of positive numbers

Mounting location with respect to the parent object, specified as a three-element row vector of
positive numbers in meters. The position vector is specified in the body frame of the input parent.

MountingAngles — Mounting orientation with respect to parent object
[0; 0; 0] (default) | three-element row vector of positive numbers

3 Objects

3-66

Mounting orientation with respect to parent object, specified as a three-element row vector of
positive numbers in degrees. The elements of the vector correspond to yaw, pitch, and roll in that
order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.
Example: [0; 30; 60]

ConicalSensors — Conical sensors
row vector of conical sensors

You can set this property only when calling conicalSensor. After you call conicalSensor, this
property is read-only.

Conical sensors attached to the Gimbal, specified as a row vector of conical sensors.

Receivers — Receivers attached to Gimbal
row vector of Receiver objects

You can set this property only when calling receiver. After you call receiver, this property is read-
only.

Receivers attached to the Gimbal, specified as a row vector of Receiver objects.

Transmitters — Transmitters attached to Gimbal
row vector of Transmitter objects

You can set this property only when calling transmitter. After you call transmitter, this property
is read-only.

Transmitters attached to the Gimbal, specified as a row vector of Transmitter objects.

Object Functions
transmitter Add transmitter to satellite scenario
receiver Add receiver to satellite scenario
conicalSensor Add conical sensor to satellite scenario
pointAt Target at which entity must be pointed
gimbalAngles Steering angles of gimbal

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | conicalSensor | groundStation | hide | play | receiver | satellite | show |
transmitter

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 Gimbal

3-67

FieldOfView
Field of view object belonging to satellite scenario

Description
The FieldOfView object defines a field of view object belonging to a satellite scenario.

Creation
You can create a FieldOfView object using the fieldOfView object function of the
ConicalSensor object.

Properties
LineWidth — Visual width of field of view contour
1 (default) | scalar in the range (0 10]

Visual width of the field of view contour in pixels, specified as a scalar in the range (0 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LineColor — Color of field of view contour
[0 1 0] (default) | RGB triplet | RGB triplet | string scalar of color name | character
vector of color name

Color of field of view contour, specified as an RGB triplet, hexadecimal color code, a color name, or a
short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'

3 Objects

3-68

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

VisibilityMode — Visibility mode of field of view contour
'inherit' (default) | 'manual'

Visibility mode of the field of view contour, specified as one of these values:

• 'inherit' — Visibility of the graphic matches that of the parent
• 'manual' — Visibility of the graphic is not inherited and is independent of that of the parent

Object Functions
show Show object in satellite scenario viewer
hide Hides satellite scenario entity from viewer

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | groundStation | hide | play | show

 FieldOfView

3-69

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

3 Objects

3-70

Link
Link analysis object belonging to Transmitter

Description
The Link object defines a link analysis object belonging to Transmitter.

Creation
You can create a Link object using the link object function of the Transmitter or Receiver
objects.

Properties
Sequence — Transmitter or receiver ID
vector of positive numbers

You can set this property only when calling Link. After you call Link, this property is read-only.

Transmitter or receiver ID, specified as a vector of positive numbers.

LineWidth — Visual width of link line
1 (default) | scalar in the range (0 10]

Visual width of link line in pixels, specified as a scalar in the range (0 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LineColor — Color of link line
[0 1 0] (default) | RGB triplet | string scalar of color name | character vector of
color name

Color of the link line, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

 Link

3-71

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

Object Functions
show Show object in satellite scenario viewer
ebno Eb/No at final node of link
linkPercentage Percentage of time when link between first and last node in link analysis is closed
linkStatus Status of link closure between first and last node
linkIntervals Intervals during which link is closed
hide Hides satellite scenario entity from viewer

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
groundStation | hide | play | receiver | show | transmitter

3 Objects

3-72

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 Link

3-73

GroundTrack
Ground track object belonging to satellite in scenario

Description
The GroundTrack object defines a ground track object belonging to a satellite in a scenario.

Creation
You can create a GroundTrack object using the groundTrack object function of the Satellite
object.

Properties
LeadTime — Period of ground track to be visualized
StartTime to StopTime (default) | positive scalar

Period of the ground track to be visualized in the satellite scenario viewer, specified as a comma-
separated pair consisting of 'LeadTime' and a real positive scalar in seconds.

TrailTime — Period of ground track history to be visualized
StartTime to StopTime (default) | positive scalar

Period of the ground track history to be visualized in Viewer, specified as a comma-separated pair
consisting of 'TrailTime' and a real positive scalar in seconds.

LineWidth — Visual width of ground track
1 (default) | scalar in the range (0 10]

Visual width of the ground track in pixels, specified as a comma-separated pair consisting of
'LineWidth' and a scalar in the range (0 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LeadLineColor — Color of future ground track line
[1 0 1] (default) | RGB triplet | RGB triplet | string scalar of color name | character
vector of color name

Color of the future ground track line, specified as a comma-separated pair consisting of
'LeadLineColor' and an RGB triplet, a hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

3 Objects

3-74

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

TrailLineColor — Color of ground track line history
[1 0.5 0] (default) | RGB triplet | RGB triplet | string scalar of color name | character
vector of color name

Color of the ground track line history, specified as a comma-separated pair consisting of
'TrailLineColor' and an RGB triplet, a hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

 GroundTrack

3-75

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

VisibilityMode — Visibility mode of ground track
'inherit' (default) | 'manual'

Visibility mode of the ground track, specified as either one of these values:

• 'inherit' — Visibility of the graphic matches that of the parent

3 Objects

3-76

• 'manual' — Visibility of the graphic is not inherited and is independent of that of the parent

Object Functions
show Show object in satellite scenario viewer
hide

See Also
Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | groundStation | hide | play | satellite | show

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

 GroundTrack

3-77

System Objects

4

dvbs2WaveformGenerator
Generate DVB-S2 waveform

Description
The dvbs2WaveformGenerator System object generates a Digital Video Broadcasting Satellite
Second Generation (DVB-S2) time-domain waveform consisting of a single or multiple physical layer
frames. The object implements the waveform generation aspects of ETSI EN 302 307-1 V1.4.1
(2014-11) [1].

To generate a DVB-S2 waveform:

1 Create the dvbs2WaveformGenerator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation
Syntax
s2waveGen = dvbs2WaveformGenerator
s2waveGen = dvbs2WaveformGenerator(Name,Value)

Description

s2waveGen = dvbs2WaveformGenerator creates a default DVB-S2 waveform generator System
object.

s2waveGen = dvbs2WaveformGenerator(Name,Value) sets properties using one or more name-
value pairs. Enclose each property name in quotes. For example,
dvbs2WaveformGenerator('NumInputStreams',4,'UPL',100) specifies four input streams,
each with a user packet length of 100 bits.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

StreamFormat — Input stream format
"TS" (default) | "GS"

Input stream format, specified as one of these values.

4 System Objects

4-2

• "TS" — For transport stream format
• "GS" — For generic stream format

Data Types: char | string

NumInputStreams — Number of input streams
1 (default) | integer in the range [1, 256]

Number of input streams, specified as an integer in the range [1, 256].
Data Types: double

UPL — User packet length
0 (default) | nonnegative integer | vector of nonnegative integers

User packet (UP) length in bits, specified as one of these options.

• Nonnegative integer — Use this option with single-input and multi-input streams. If you set the
NumInputStreams property to a value greater than 1, the UP in each stream must be equal to
the integer value of the UPL property.

• Vector of nonnegative integers — Use this option with multi-input streams only. If you set the
NumInputStreams property to a value greater than 1, the UP in each stream must be the size of
the corresponding element in this vector. The length of this vector must be equal to
NumInputStreams.

Note When you specify UPL as a multi-input stream, all UPs must be either packetized or in a
continuous stream. Mixing stream types is not supported.

The maximum value of UPL as an integer scalar or an integer element in the row vector must be less
than or equal to the corresponding DFL property value.

For a generic continuous stream, set UPL to 0.

Dependencies

To enable this property, set the StreamFormat property to "GS". If you set the StreamFormat
property to "TS", the UPL is fixed to 1504 bits.
Data Types: double

FECFrame — FEC frame format
"normal" (default) | "short"

Forward error correction (FEC) frame format, specified as one of these two options.

• "normal" — Sets the low density parity-check (LDPC) codeword length to 64,800 bits
• "short" — Sets the LDPC codeword length to 16,200 bits

Tunable: Yes
Data Types: char | string

MODCOD — Modulation scheme and FEC rate
1 (default) | integer in the range [1, 28] | vector of integers in the range [1, 28]

 dvbs2WaveformGenerator

4-3

Modulation scheme and FEC rate for input transmission, specified as one of these options, as defined
in ETSI EN 302 307-1 Section 5.5.2.2 Table 12 [1].

• Integer in the range [1, 28] — Use this option with single-input and multi-input streams. If you set
the NumInputStreams property to a value greater than 1, each stream has the same modulation
scheme and coding rate.

• Vector of integers in the range [1, 28] — Use this option with multi-input streams only. If you set
the NumInputStreams property to a value greater than 1, each input stream has a modulation
scheme and coding rate equal to the corresponding element in this vector. The length of this
vector must be equal to NumInputStreams.

Note MODCOD values 11, 17, 23, and 28 are not valid when you set the FECFrame property to
"short" (as specified in ETSI EN 302 307-1 Section 5.3 Table 5b [1]).

Tunable: Yes
Data Types: double

DFL — Data field length
15,928 (default) | integer in the range [1, (KBCH−80)] | vector of integers in the range [1, (KBCH−80)]

Data field (DF) length in bits, specified as one of these options. KBCH is the uncoded BCH block
length, as specified in ETSI EN 302 307-1 Section 5.3 Table 5a and 5b [1].

• Integer in the range [1, (KBCH−80)] — Use this option with single-input and multi-input streams. If
you set the NumInputStreams property to a value greater than 1, the length of the DF in
baseband frame of each stream is the same value.

• Vector of integers in the range [1, (KBCH−80)] — Use this option with multi-input streams only. If
you set the NumInputStreams property to a value greater than 1, the length of the data field in
the baseband frame of each stream must be the size of the corresponding element in this vector.
The length of this vector must be equal to NumInputStreams.

Tunable: Yes
Data Types: double

ScalingMethod — Constellation amplitude scaling method
"outer radius as 1" (default) | "unit average power"

Constellation amplitude scaling method, specified as "outer radius as 1" or "unit average
power".

Dependencies

To enable this property, set the MODCOD property to a value in the range [18, 28], which indicates only
16APSK and 32APSK modulation schemes.
Data Types: char | string

HasPilots — Pilot block indication
0 or false (default) | 1 or true | vector of logical values

Pilot block indication, specified as a logical value of 0 (false), 1 (true), or a vector of logical
values. Set this value to 1 (true) to indicate pilots are inserted in the physical layer frame.

4 System Objects

4-4

If you set the NumInputStreams property to a value greater than 1, you can configure pilots for each
stream by specifying this property as a vector. The length of this vector must be equal to
NumInputStreams.

Tunable: Yes
Data Types: logical

RolloffFactor — Transmit filter roll-off factor
0.35 (default) | 0.25 | 0.2

Transmit filter roll-off factor for baseband pulse shaping, specified as 0.35, 0.25, or 0.2.
Data Types: double

FilterSpanInSymbols — Filter span in symbols
10 (default) | positive integer

Filter span in symbols, specified as a positive integer.

The ideal impulse response of the transmit filter is truncated to a length that spans the number of
symbols specified in this property.
Data Types: double

SamplesPerSymbol — Number of samples per symbol
4 (default) | positive integer

Number of samples per symbol, specified as a positive integer.
Data Types: double

ISSYI — Input stream synchronization indicator
0 or false (default) | 1 or true

Input stream synchronization (ISSY) indicator, specified as a logical value of 0 (false) or 1 (true).
To indicate that input stream synchronization is used, set this value to 1 (true).

Dependencies

To enable this property, set the NumInputStreams property to a value greater than 1 and set the
UPL property to a nonzero value.
Data Types: logical

ISCRFormat — Input stream clock reference format
"short" (default) | "long"

Input stream clock reference format, specified as one of these options.

• "short" — Indicates the length of ISSY as 2 bytes
• "long" — Indicates the length of ISSY as 3 bytes

When you set the StreamFormat property to "GS", NumInputStreams property to a value greater
than 1, UPL property to a nonzero value, and ISSYI to 1 (true), only the "short" option of this
ISCRFormat property is applicable.

 dvbs2WaveformGenerator

4-5

Dependencies

To enable this property, set the StreamFormat property to "TS", the NumInputStreams property to
a value greater than 1, and the ISSYI property to 1 (true).
Data Types: char | string

MinNumPackets — Minimum number of packets required to create DF
integer in the range [1, 58,112] | row vector of integers

This property is read-only.

Minimum number of packets required to create a DF, specified as one of these options.

• Integer in the range [1, 58,112] — This option applies with single-input streams only.
• Row vector of integers in the range [1, 58,112] — This option applies with multi-input streams

only. If you set the NumInputStreams property to a value greater than 1, the minimum number of
packets required for each stream is equal to the corresponding element in this vector. The length
of this vector must be equal to NumInputStreams.

The value of MinNumPackets is computed based of values of DFL and UPL properties.

Dependencies

To enable this property, set the UPL property to a nonzero value.
Data Types: double

Usage

Syntax
txWaveform = s2waveGen(data)

Description

txWaveform = s2waveGen(data) generates a DVB-S2 time-domain waveform from the input
information bits.

Input Arguments

data — Input information bits
binary-valued column vector | cell array of binary-valued column vectors

Input information bits, specified as one of these options. Each element of the column vector or cell
array can be of data type double, int8, or logical.

• Binary-valued column vector — Use this option with single-input streams.
• Cell array of binary-valued column vectors — Use this option with multi-input streams. Each

element of the array represents the corresponding input stream. The length of the cell array must
be equal to the value of the NumInputStreams property.

Input data, either as a single-input or multi-input stream, must be input in one of these forms.

4 System Objects

4-6

• Packetized stream — The number of packets in each stream must be an integer multiple of the
MinNumPackets property.

For a packetized stream, an 8-bit sync field must be included at the beginning of each packet. The
combined length of a packet and its sync bits must be equal to the corresponding value of the UPL
property.

• Continuous stream — The number of bits for each stream must be an integer multiple of the DFL
property.

Note When you set the StreamFormat property to "TS", the sync byte is fixed as 47 hex.

Data Types: double | int8 | logical | cell

Output Arguments

txWaveform — Generated time-domain DVB-S2 waveform
column vector

Generated time-domain DVB-S2 waveform, returned as a column vector. The waveform is generated
in the form of complex in-phase quadrature (IQ) samples and can consist of a single physical layer
frame or multiple physical layer frames.

When you set the NumInputStreams property to a value greater than 1, the data fields generated
from different input streams are merged using the round-robin technique.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dvbs2WaveformGenerator
info Characteristic information about object
flushFilter Flush transmit filter

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
clone Create duplicate System object
isLocked Determine if System object is in use
reset Reset internal states of System object

Examples

 dvbs2WaveformGenerator

4-7

Generate DVB-S2 Waveform for Single-Input Stream

Generate a Digital Video Broadcasting Satellite Second Generation (DVB-S2) time-domain waveform
for a single-input transport stream (TS) with a single physical layer (PL) frame per stream. Visualize
the waveform using constellation plots and signal spectrum.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip','file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of PL frames per stream.

numFrames = 1;

Create a DVB-S2 System object. Specify the modulation scheme and FEC rate (MODCOD) and data
field length (DFL).

 s2WaveGen = dvbs2WaveformGenerator;
 s2WaveGen.MODCOD = 21; % 16APSK 5/6
 s2WaveGen.DFL = 39690;
 s2WaveGen.HasPilots = true; % Pilot insertion indication
 disp(s2WaveGen)

 dvbs2WaveformGenerator with properties:

 StreamFormat: "TS"
 NumInputStreams: 1
 FECFrame: "normal"
 MODCOD: 21
 DFL: 39690
 ScalingMethod: "outer radius as 1"
 HasPilots: 1
 RolloffFactor: 0.3500
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 4

 Show all properties

Create a bit vector of information bits, data, of concatenated TS user packets.

syncBits = [0 1 0 0 0 1 1 1]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
numPkts = s2WaveGen.MinNumPackets*numFrames;
txRawPkts = randi([0 1],pktLen,numPkts);
txPkts = [repmat(syncBits,1,numPkts); txRawPkts];
data = txPkts(:);

Generate a DVB-S2 time-domain waveform using the information bits, data.

txWaveform = s2WaveGen(data);

4 System Objects

4-8

Visualize the constellation plot for the generated DVB-S2 time-domain waveform by creating a
comm.ConstellationDiagram System object.

sps = s2WaveGen.SamplesPerSymbol;
constel = comm.ConstellationDiagram('ColorFading',true, ...
 'ShowTrajectory',0, ...
 'SamplesPerSymbol',sps, ...
 'ShowReferenceConstellation',false, ...
 'XLimits',[-0.5 0.5], 'YLimits',[-0.5 0.5]);
plHeaderLen = 90*sps; % PL header length
constel(txWaveform(plHeaderLen+1:end));
release(constel);

 dvbs2WaveformGenerator

4-9

https://www.mathworks.com/help/comm/ref/comm.constellationdiagram-system-object.html

Display the frequency spectrum of the generated DVB-S2 time-domain waveform by creating a
dsp.SpectrumAnalyzer System object.

BW = 36e6; % Typical satellite channel bandwidth
Fsym = BW/(1+s2WaveGen.RolloffFactor);
Fsamp = Fsym*sps;
scope = dsp.SpectrumAnalyzer('SampleRate',Fsamp);
scope(txWaveform)

4 System Objects

4-10

https://www.mathworks.com/help/dsp/ref/dsp.spectrumanalyzer-system-object.html

Generate DVB-S2 Waveform for Multi-Input Stream

Generate a Digital Video Broadcasting Satellite Second Generation (DVB-S2) time-domain waveform
for a multi-input generic stream (GS) with multiple physical layer (PL) frames per stream.

This example requires MAT-files with LDPC parity matrices. If they are not available on the path,
execute the following commands to download and unzip the MAT-files.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip', 'file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of PL frames per stream.

numFrames = 3;

Create a DVB-S2 System object with variable coding and modulation configuration for a multi-input
GS. Specify the modulation scheme and FEC rate (MODCOD) and data field length (DFL).

 dvbs2WaveformGenerator

4-11

s2WaveGen = dvbs2WaveformGenerator;
s2WaveGen.StreamFormat = "GS";
s2WaveGen.NumInputStreams = 2;
s2WaveGen.MODCOD = [6 24]; % QPSK 2/3 and 32APSK 3/4
s2WaveGen.DFL = [42960 48328];
s2WaveGen.HasPilots = true;
s2WaveGen.SamplesPerSymbol = 10;
disp(s2WaveGen)

 dvbs2WaveformGenerator with properties:

 StreamFormat: "GS"
 NumInputStreams: 2
 UPL: 0
 FECFrame: "normal"
 MODCOD: [6 24]
 DFL: [42960 48328]
 ScalingMethod: "outer radius as 1"
 HasPilots: 1
 RolloffFactor: 0.3500
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 10

Create a bit vector of input information bits for each GS user packet.

data = cell(s2WaveGen.NumInputStreams,1);
 for i = 1:s2WaveGen.NumInputStreams
 data{i} = randi([0 1],s2WaveGen.DFL(i)*numFrames,1,'int8');
 end

Generate the DVB-S2 time-domain waveform with the input information bits.

txWaveform = s2WaveGen(data);

References
[1] ETSI Standard EN 302 307-1 V1.4.1(2014-11). Digital Video Broadcasting (DVB); Second

Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting,
Interactive Services, News Gathering and other Broadband Satellite Applications (DVB-S2).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For all properties that support string and cell array input, code generation is only supported with
cell array input.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

4 System Objects

4-12

See Also
Functions
dvbs2BitRecover

Objects
dvbs2xWaveformGenerator

Introduced in R2021a

 dvbs2WaveformGenerator

4-13

dvbs2xWaveformGenerator
Generate DVB-S2X waveform

Description
The dvbs2xWaveformGenerator System object generates a Digital Video Broadcasting Satellite
Second Generation extended (DVB-S2X) time-domain waveform consisting of a single or multiple
physical layer (PL) frames. The object implements the waveform generation aspects of ETSI EN 302
307-2 V1.1.1 (2015-11) [2].

To generate a DVB-S2X waveform:

1 Create the dvbs2xWaveformGenerator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation
Syntax
s2xWaveGen = dvbs2xWaveformGenerator
s2xWaveGen = dvbs2xWaveformGenerator(Name,Value)

Description

s2xWaveGen = dvbs2xWaveformGenerator creates a default DVB-S2X waveform generator
System object.

s2xWaveGen = dvbs2xWaveformGenerator(Name,Value) sets properties using one or more
name-value pairs. Enclose each property name in quotes. For example,
dvbs2xWaveformGenerator('NumInputStreams',4,'UPL',100) specifies four input streams,
each with a user packet length of 100 bits.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

StreamFormat — Input stream format
"TS" (default) | "GS"

Input stream format, specified as one of these values.

4 System Objects

4-14

• "TS" — For transport stream format
• "GS" — For generic stream format

Data Types: char | string

HasTimeSlicing — Time slicing indicator
0 or false (default) | 1 or true

Time slicing indicator, specified as a logical value of 0 (false) or 1 (true). To indicate that time
slicing transmission format is used, set this value to 1 (true).

If you set this property to 1 (true), you can set the NumInputStreams property to a maximum value
of 8.
Data Types: logical

NumInputStreams — Number of input streams
1 (default) | integer in the range [1, 256]

Number of input streams, specified as an integer in the range [1, 256].

When you set the HasTImeSlicing property to true, NumInputStreams property can be specified
to a maximum value of 8.
Data Types: double

UPL — User packet length
0 (default) | nonnegative integer | vector of nonnegative integers

User packet (UP) length in bits, specified as one of these options.

• Nonnegative integer — Use this option with single-input and multi-input streams. If you set the
NumInputStreams property to a value greater than 1, the UP in each stream must be equal to
the integer value of the UPL property.

• Vector of nonnegative integers — Use this option with multi-input streams only. If you set the
NumInputStreams property to a value greater than 1, the UP in each stream must be the size of
the corresponding element in this vector. The length of this vector must be equal to
NumInputStreams.

Note When you specify UPL as a multi-input stream, all UPs must be either packetized or in a
continuous stream. Mixing stream types is not supported.

The maximum value of UPL as an integer scalar or an integer element in the row vector must be less
than or equal to the corresponding DFL property value.

For a generic continuous stream, set UPL to 0.
Dependencies

To enable this property, set the StreamFormat property to "GS". If you set the StreamFormat
property to "TS", the UPL is fixed to 1504 bits.
Data Types: double

PLSDecimalCode — PL signalling code information
132 (default) | integer in the range [4, 249] | vector of integers in the range [4, 249]

 dvbs2xWaveformGenerator

4-15

PL signalling code information, in decimal format, specified as one of these options (as described in
ETSI EN 302 307-1 Section 5.5.2.2 [1] and ETSI EN 302 307-2 Section 5.5.2.2 Table 17a [2]).

• Integer in the range [4, 249] — Use this option with single-input and multi-input streams. If you
set the NumInputStreams property to a value greater than 1, each stream has the same
modulation scheme and coding rate.

• Vector of integers in the range [4, 249] — Use this option with multi-input streams only. If you set
the NumInputStreams property to a value greater than 1, each stream has a modulation scheme
and coding rate equal to the corresponding element in this vector. The length of this vector must
be equal to NumInputStreams.

All odd integer values are considered to include pilots in PL frames.

Note Few PLSDecimalCode values are invalid in this specified value range. Invalid values include
{46, 47, 70, 71, 94, 95, 114, 128, 130, 176, 177, 188, 189, 192, 193, 196, and 197}.

To calculate the PLSDecimalCode property value for a DVB-S2X system configuration, use this
formula.

MODCOD*4 + (0 - for normal FECFrame/1 - for short FECFrame)*2 + (0 - if HasPilots property value
is false/1 - if HasPilots property value is true)

For example, if MODCOD = 18 (16APSK 2/3) with short FEC frame and pilots disabled, the value of
PLSDecimalCode calculated by using this formula is:

PLSDecimalCode = 18*4 + 1*2 + 0 = 74

Note For very low signal to noise ratio (VL-SNR) frames, you must set the PLSDecimalCode
property to either 129 or 131, which indicates the VL-SNR set 1 or 2, respectively.

VL-SNR frames must not be combined with regular frames.

Tunable: Yes
Data Types: double

CanonicalMODCODName — Canonical modulation scheme and code rate name
"QPSK 2/9" (default) | character vector | string scalar | cell array | string array

Canonical modulation scheme and code rate name for VL-SNR frame transmission, specified as one of
these options (as described in ETSI EN 302 307-2 Section 5.5.2.2 Table 18a [2]).

• Character vector or string scalar — Use this option with single-input and multi-input streams. If
you set the NumInputStreams property to a value greater than 1, each stream has the same
modulation scheme and coding rate.

• Cell array or string array — Use this option with multi-input streams only. If you set the
NumInputStreams property to a value greater than 1, each input stream has a modulation
scheme and coding rate equal to the corresponding value in this array. The length of this array
must be equal to NumInputStreams.

Valid CanonicalMODCODName values include these options.

4 System Objects

4-16

• "QPSK 2/9", "BPSK 1/5", "BPSK 11/45", "BPSK-S 1/5", "BPSK-S 11/45", and "BPSK
1/3" — Applicable for VL-SNR set 1

• "BPSK 1/5", "BPSK 4/15", and "BPSK 1/3" — Applicable for VL-SNR set 2

Tunable: Yes

Dependencies

To enable this property, set the PLSDecimalCode property to either 129 (for VL-SNR set 1) or 131
(for VL-SNR set 2). This property applies for only VL-SNR frame transmissions.
Data Types: char | string

DFL — Data field length
18,448 (default) | integer in the range [1, (KBCH−80)] | vector of integers in the range [1, (KBCH−80)]

Data field (DF) length in bits, specified as one of these options. KBCH is the uncoded BCH block
length, as specified in ETSI EN 302 307-1 Section 5.3 Table 5a and 5b [1].

• Integer in the range [1, (KBCH−80)] — Use this option with single-input and multi-input streams. If
you set the NumInputStreams property to a value greater than 1, the length of the DF in
baseband frame of each stream is the same value.

• Vector of integers in the range [1, (KBCH−80)] — Use this option with multi-input streams only. If
you set the NumInputStreams property to a value greater than 1, the length of the data field in
the baseband frame of each stream must be the size of the corresponding element in this vector.
The length of this vector must be equal to NumInputStreams.

Tunable: Yes
Data Types: double

ScalingMethod — Constellation amplitude scaling method
"outer radius as 1" (default) | "unit average power"

Constellation amplitude scaling method, specified as "outer radius as 1" or "unit average
power".

Dependencies

To enable this property, set the PLSDecimalCode property to a value corresponding to APSK
modulation, with the following as exception: {164, 165, 158, 159, 206, 207, 212, and 213}. The other
exceptions are QPSK and 8 PSK values: {4 to 69, inclusive; 129; 131; 132 to 137, inclusive; 142 to
147, inclusive; 216 to 235, inclusive}.
Data Types: char | string

PLScramblingIndex — PL scrambling sequence index
integer in the range [0, 7] | vector of integers in the range [0, 7]

PL scrambling sequence index, specified as one of these options (as described in ETSI EN 302 307-2
Section 5.5.4 Table 19e [2]).

• Integer in the range [0, 7] — Use this option with single-input and multi-input streams.

If you set the NumInputStreams property to a value greater than 1, each stream has the same
value of PL scrambling index.

 dvbs2xWaveformGenerator

4-17

• Vector of integers in the range [0, 7] — Use this option when you set the HasTimeSlicing
property to true for multi-input streams.

If you set the NumInputStreams property to a value greater than 1, the PL scrambling index
value of each stream must be equal to the corresponding element in this vector. The length of this
vector must be equal to NumInputStreams.

To generate the PL scrambling sequence, the actual index used is PLScramblingIndex*10949.
Data Types: double

RolloffFactor — Transmit filter roll-off factor
0.35 (default) | 0.05 | 0.1 | 0.15 | 0.2 | 0.25

Transmit filter roll-off factor for baseband pulse shaping, specified as 0.35, 0.05, 0.1, 0.15, 0.2, or
0.25.
Data Types: double

FilterSpanInSymbols — Filter span in symbols
10 (default) | positive integer

Filter span in symbols, specified as a positive integer.

The ideal impulse response of the transmit filter is truncated to a length that spans the number of
symbols specified in this property.
Data Types: double

SamplesPerSymbol — Number of samples per symbol
4 (default) | positive integer

Number of samples per symbol, specified as a positive integer.
Data Types: double

ISSYI — Input stream synchronization indicator
0 or false (default) | 1 or true

Input stream synchronization (ISSY) indicator, specified as a logical value of 0 (false) or 1 (true).
To indicate that input stream synchronization is used, set this value to 1 (true).

Dependencies

To enable this property, set the NumInputStreams property to a value greater than 1 and set the
UPL property to a nonzero value.
Data Types: logical

ISCRFormat — Input stream clock reference format
"short" (default) | "long"

Input stream clock reference format, specified as one of these options.

• "short" — Indicates the length of ISSY as 2 bytes
• "long" — Indicates the length of ISSY as 3 bytes

4 System Objects

4-18

When you set the StreamFormat property to "GS", NumInputStreams property to a value greater
than 1, UPL property to a nonzero value, and ISSYI to 1 (true), only the "short" option of this
ISCRFormat property is applicable.

Dependencies

To enable this property, set the StreamFormat property to "TS", the NumInputStreams property to
a value greater than 1, and the ISSYI property to 1 (true).
Data Types: char | string

MinNumPackets — Minimum number of packets required to create DF
integer in the range [1, 58,112] | row vector of positive integers

This property is read-only.

Minimum number of packets required to create a DF, specified as one of these options.

• Integer in the range [1, 58,112] — This option applies with single-input streams only.
• Row vector of positive integers in the range [1, 58,112] — This option applies with multi-input

streams only. If you set the NumInputStreams property to a value greater than 1, the minimum
number of packets required for each stream is equal to the corresponding element in this vector.
The length of this vector must be equal to NumInputStreams.

The value of MinNumPackets is computed based of values of DFL and UPL properties.

Dependencies

To enable this property, set the UPL property to a nonzero value.
Data Types: double

Usage

Syntax
txWaveform = s2xWaveGen(data)

Description

txWaveform = s2xWaveGen(data) generates a DVB-S2X time-domain waveform from the input
information bits.

Input Arguments

data — Input information bits
binary-valued column vector | cell array of binary-valued column vectors

Input information bits, specified as one of these options. Each element of the column vector or cell
array can be of the data type double, int8, or logical.

• Binary-valued column vector – Use this option with single-input stream.
• Cell array of binary-valued column vectors – Use this option with multi-input streams. Each

element of the array represents the corresponding input stream. The length of the cell array must
be equal to the value of the NumInputStreams property.

 dvbs2xWaveformGenerator

4-19

data, either single stream or multi-stream, can be input in one of these forms.

• Packetized stream – The number of packets in each stream must be an integer multiple of the
MinNumPackets property.

For a packetized stream, an 8-bit sync field must be included at the beginning of each packet. The
combined length of a packet and its sync bits must be equal to the corresponding value of the UPL
property.

• Continuous Stream – The number of bits for each stream must be an integer multiple of the DFL
property.

Note When you set the StreamFormat property to "TS", the sync byte is fixed as 47 hex.

Data Types: double | int8 | logical | cell

Output Arguments

txWaveform — Generated time-domain DVB-S2X waveform
column vector

Generated time-domain DVB-S2X waveform, returned as a column vector. The waveform is generated
in the form of complex in-phase quadrature (IQ) samples and can consist of a single physical layer
frame or multiple physical layer frames.

When you set the NumInputStreams property to a value greater than 1, the data fields generated
from different input streams are merged using the round-robin technique.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dvbs2xWaveformGenerator
info Characteristic information about object
flushFilter Flush transmit filter

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
clone Create duplicate System object
isLocked Determine if System object is in use
reset Reset internal states of System object

Examples

4 System Objects

4-20

Generate DVB-S2X Waveform for Single-Input Stream

Generate a Digital Video Broadcasting Satellite Second Generation extended (DVB-S2X) time-domain
waveform for a single-input transport stream (TS) with a single physical layer (PL) frame per stream.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip','file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of PL frames per stream.

numFrames = 1;

Create a DVB-S2X System object with pilot-aided PL.

s2xWaveGen = dvbs2xWaveformGenerator;
s2xWaveGen.PLSDecimalCode = 133; % QPSK 13/45
 % All odd PLSDecimalCode values are pilot aided
disp(s2xWaveGen)

 dvbs2xWaveformGenerator with properties:

 StreamFormat: "TS"
 HasTimeSlicing: false
 NumInputStreams: 1
 PLSDecimalCode: 133
 DFL: 18448
 PLScramblingIndex: 0
 RolloffFactor: 0.3500
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 4

 Show all properties

Create the bit vector of information bits, data, of concatenated TS user packets.

syncBits = [0 1 0 0 0 1 1 1]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
numPkts = s2xWaveGen.MinNumPackets*numFrames;
txRawPkts = randi([0 1],pktLen,numPkts);
txPkts = [repmat(syncBits,1,numPkts); txRawPkts];
data = txPkts(:);

Generate a DVB-S2X time-domain waveform using the information bits, data.

txWaveform = s2xWaveGen(data);

 dvbs2xWaveformGenerator

4-21

Generate DVB-S2X Waveform Consisting of VL-SNR Frame

Generate a Digital Video Broadcasting Satellite Second Generation extended (DVB-S2X) time-domain
waveform for a single-input generic stream (GS) with multiple physical layer (PL) frames per stream.

The DVB-S2X waveform generated in this example consists of a very low signal to noise ratio (VL-
SNR) frame of set 2.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip','file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of PL frames per stream.

numFrames = 2;

Create a DVB-S2X System object and specify its properties.

s2xWaveGen = dvbs2xWaveformGenerator;
s2xWaveGen.StreamFormat = "GS";
s2xWaveGen.PLSDecimalCode = 131; % VL-SNR set 2
s2xWaveGen.CanonicalMODCODName = "BPSK 1/3";
s2xWaveGen.DFL = 5080;
s2xWaveGen.SamplesPerSymbol = 6;
disp(s2xWaveGen)

 dvbs2xWaveformGenerator with properties:

 StreamFormat: "GS"
 HasTimeSlicing: false
 NumInputStreams: 1
 UPL: 0
 PLSDecimalCode: 131
 CanonicalMODCODName: "BPSK 1/3"
 DFL: 5080
 PLScramblingIndex: 0
 RolloffFactor: 0.3500
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 6

Create a bit vector of information bits for each stream.

data = randi([0 1],s2xWaveGen.DFL*numFrames,1,'int8');

Generate a DVB-S2X time-domain waveform using the information bits.

txWaveform = s2xWaveGen(data);

4 System Objects

4-22

Get DVB-S2X Waveform Generator Information and Check Transmit Filter Delay

Get information from a dvbs2xWaveformGenerator System object by using the info function.
Then retrieve the filter residual samples by using the flushFilter object function.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
 if ~exist('s2xLDPCParityMatrices.zip','file')
 url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
 websave('s2xLDPCParityMatrices.zip',url);
 unzip('s2xLDPCParityMatrices.zip');
 end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

numFrames = 2;

Create a Digital Video Broadcasting Satellite Second Generation extended (DVB-S2X) System object
and specify its properties. Use time slicing technique and variable coding and modulation
configuration mode.

s2xWaveGen = dvbs2xWaveformGenerator();
s2xWaveGen.HasTimeSlicing = true;
s2xWaveGen.NumInputStreams = 2;
s2xWaveGen.PLSDecimalCode = [135 145]; % QPSK 9/20 and 8PSK 25/36
s2xWaveGen.DFL = [18048 44656];
s2xWaveGen.PLScramblingIndex = [0 1];
disp(s2xWaveGen)

 dvbs2xWaveformGenerator with properties:

 StreamFormat: "TS"
 HasTimeSlicing: true
 NumInputStreams: 2
 PLSDecimalCode: [135 145]
 DFL: [18048 44656]
 PLScramblingIndex: [0 1]
 RolloffFactor: 0.3500
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 4
 ISSYI: false

 Show all properties

Get the characteristic information about the DVB-S2X waveform generator.

info(s2xWaveGen)

ans = struct with fields:
 FECFrame: {'normal' 'normal'}
 ModulationScheme: {'QPSK' '8PSK'}
 LDPCCodeIdentifier: {'9/20' '25/36'}

 dvbs2xWaveformGenerator

4-23

Create the bit vector of input information bits, data, of concatenated TS user packets for each input
stream.

syncBits = [0 1 0 0 0 1 1 1]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
data = cell(1, s2xWaveGen.NumInputStreams);
for i = 1:s2xWaveGen.NumInputStreams
 numPkts = s2xWaveGen.MinNumPackets(i)*numFrames;
 txRawPkts = randi([0 1], pktLen, numPkts);
 txPkts = [repmat(syncBits, 1, numPkts); txRawPkts];
 data{i} = txPkts(:);
end

Generate a DVB-S2X time-domain waveform using the information bits.

txWaveform = s2xWaveGen(data);

Check the filter residual data samples that remain in the filter delay.

flushFilter(s2xWaveGen)

ans = 40×1 complex

 -0.2412 - 0.0143i
 -0.2619 - 0.0861i
 -0.2726 - 0.1337i
 -0.2511 - 0.1597i
 -0.1851 - 0.1680i
 -0.0780 - 0.1602i
 0.0448 - 0.1288i
 0.1598 - 0.0751i
 0.2482 - 0.0049i
 0.3026 + 0.0702i
 ⋮

References
[1] ETSI Standard EN 302 307-1 V1.4.1(2014-11). Digital Video Broadcasting (DVB); Second

Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting,
Interactive Services, News Gathering and other Broadband Satellite Applications (DVB-S2).

[2] ETSI Standard EN 302 307-2 V1.1.1(2015-11). Digital Video Broadcasting (DVB); Second
Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting,
Interactive Services, News Gathering and other Broadband Satellite Applications; Part 2:
DVB-S2 Extensions (DVB-S2X).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For all properties that support string and cell array input, code generation is only supported with
cell array input.

4 System Objects

4-24

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dvbs2WaveformGenerator

Functions
dvbs2BitRecover

Introduced in R2021a

 dvbs2xWaveformGenerator

4-25

etsiRicianChannel
Filter input signal through multipath ETSI frequency-flat Rician fading channel

Description
The etsiRicianChannel System object filters an input signal through a multipath European
Telecommunication Standards Institute (ETSI) frequency-flat Rician fading channel. For more
information on the etsiRicianChannel fading model, see “Channel Model Block Diagram” on page
4-32.

To filter an input signal using a multipath ETSI Rician fading channel:

1 Create the etsiRicianChannel object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation
Syntax
chan = etsiRicianChannel
chan = etsiRicianChannel(Name,Value)

Description

chan = etsiRicianChannel creates a multipath ETSI frequency-flat Rician fading channel System
object. This object filters a real or complex input signal through the multipath channel to obtain the
channel-impaired signal.

chan = etsiRicianChannel(Name,Value) sets properties on page 4-26 using one or more
name-value pairs. Enclose each property name in quotes. For example,
etsiRicianChannel("SampleRate",2) sets the input signal sample rate to 2.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Input signal sample rate
1 (default) | positive scalar

Input signal sample rate in Hz, specified as a positive scalar.

4 System Objects

4-26

Data Types: double

KFactor — Rician K-factor
3 (default) | nonnegative nonzero scalar

Rician K-factor in dB, specified as a nonnegative nonzero scalar.

KFactor is the ratio of direct signal power to the total multipath power. For details, see “Channel
Model Block Diagram” on page 4-32.
Data Types: double

MaximumDopplerShift — Maximum Doppler shift for channel path
0.001 (default) | nonnegative scalar

Maximum Doppler shift for the channel path, specified as a nonnegative scalar. Units are in hertz.

When you set this property to 0, the channel remains static for the entire input. You can use the
reset object function to generate a new channel realization. The MaximumDopplerShift property
value must be smaller than SampleRate/10.
Data Types: double

NumSinusoids — Number of sinusoids used
48 (default) | positive integer

Number of sinusoids used to model the fading process, specified as a positive integer.
Data Types: double

RandomStream — Source of random number stream
"Global stream" (default) | "mt19937ar with seed"

Source of random number stream, specified as one of these options.

• "Global stream" — The current global random number stream is used for normally distributed
random number generation. In this case, the reset object function resets the channel filters only.

• "mt19937ar with seed" — The mt19937ar algorithm is used for normally distributed random
number generation. In this case, the reset object function resets the channel filters and
reinitializes the random number stream to the value of the seed property.

Data Types: char | string

Seed — Initial seed of mt19937ar random number stream
73 (default) | nonnegative integer

Initial seed of the mt19937ar random number stream generator algorithm, specified as a nonnegative
integer.
Dependencies

To enable this property, set the RandomStream property to "mt19937ar with seed".
Data Types: double

Visualization — Channel visualization
"Off" (default) | "Impulse response" | "Frequency response" | "Impulse and frequency
responses" | "Doppler spectrum"

 etsiRicianChannel

4-27

Channel visualization, specified as "Off", "Impulse response", "Frequency response",
"Impulse and frequency responses", or "Doppler spectrum".
Data Types: char | string

Usage

Syntax
y = chan(x)
[y,pathgains] = chan(x)

Description

y = chan(x) filters input signal x through a multipath ETSI frequency-flat Rician fading channel
and returns the output signal in y.

[y,pathgains] = chan(x) returns the channel path gains of the underlying multipath ETSI
frequency-flat Rician fading process in pathgains.

Input Arguments

x — Input signal
NS-by-1 vector

Input signal, specified as an NS-by-1 vector, where NS is the number of samples.
Data Types: double
Complex Number Support: Yes

Output Arguments

y — Output signal
NS-by-1 vector

Output signal, returned as an NS-by-1 vector of complex values with the same data precision as the
input signal x on page 4-0 . NS is the number of samples.
Data Types: double
Complex Number Support: Yes

pathgains — Path gains
NS-by-1 vector

Path gains, returned as an NS-by-1 vector of complex values with the same data precision as the input
signal x on page 4-0 . NS is the number of samples.
Data Types: double
Complex Number Support: Yes

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

4 System Objects

4-28

release(obj)

Specific to etsiRicianChannel
info Characteristic information about object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
clone Create duplicate System object
isLocked Determine if System object is in use
reset Reset internal states of System object

Examples

Transmit Input Signal Through ETSI Rician Channel

Transmit an input signal through a European Telecommunication Standards Institute (ETSI) Rician
channel model.

Define the channel configuration using an etsiRicianChannel System object and specify its
properties.

chan = etsiRicianChannel;
chan.SampleRate = 2.9e6;
chan.KFactor = 4;
chan.MaximumDopplerShift = 30;
chan.NumSinusoids = 45;
disp(chan)

 etsiRicianChannel with properties:

 SampleRate: 2900000
 KFactor: 4
 MaximumDopplerShift: 30

 Use get to show all properties

Generate a QPSK-modulated input signal to pass through the channel.

txWaveform = pskmod(randi([0 3],chan.SampleRate,1),4);

Filter the signal through the Rician channel.

rxWaveform = chan(txWaveform);

Verify ETSI Rician Channel Outputs Using Two Random Number Generation Methods

Produce the same multipath European Telecommunication Standards Institute (ETSI) Rician fading
channel response by using two different methods for random number generation. The multipath ETSI
Rician fading channel System object includes two methods for random number generation. You can

 etsiRicianChannel

4-29

use the current global stream or the mt19937ar algorithm with a specified seed. By interacting with
the global stream, the System object can produce the same outputs from the two methods.

Create etsiRicianChannel System object, and then specify its properties. Set the random number
generation method as the mt19937ar algorithm.

chan = etsiRicianChannel;
chan.SampleRate = 150000;
chan.KFactor = 2;
chan.MaximumDopplerShift = 10;
chan.RandomStream = "mt19937ar with seed";
chan.Seed = 80;

Modulate randomly generated data.

txWaveform = pskmod(randi([0 3],512,1),4);

Filter the modulated data by using the multipath Rician fading channel System object.

[ChanOut1,PathGains1] = chan(txWaveform);

Set the System object to use the global stream for random number generation.

release(chan);
chan.RandomStream = "Global stream";

Set the global stream to have the same seed that was specified when creating the multipath Rician
fading channel System object.

rng(80)

Filter the modulated data by using the multipath Rician fading channel System object again.

[ChanOut2,PathGains2] = chan(txWaveform);

Verify that the channel and path gain outputs are the same for each of the two random number
generation methods.

isequal(ChanOut1,ChanOut2)

ans = logical
 1

isequal(PathGains1,PathGains2)

ans = logical
 1

Plot Doppler Spectrum for ETSI Rician Fading Channel

Create a multipath European Telecommunication Standards Institute (ETSI) Rician fading channel
and display its Doppler spectrum.

Create etsiRicianChannel System object, and then specify its properties.

4 System Objects

4-30

chan = etsiRicianChannel;
chan.SampleRate = 3.6e6;
chan.KFactor = 10;
chan.MaximumDopplerShift = 50;
chan.Visualization = "Doppler Spectrum"; % Jake's Doppler spectrum

Generate random binary data for n consecutive frames and pass the data through the multipath
Rician fading channel.

n = 50;
for i = 1:n
 x = randi([0 1],3.6e6,1);
 y = chan(x); % Spectrum visualization is updated only when the buffer is filled
 % Required samples to fill the buffer is mentioned in the scope
end

 etsiRicianChannel

4-31

More About
Channel Model Block Diagram

The channel model block diagram provides an overview of the etsiRicianChannel System object,
as specified in ETSI TS 101 376-5-5 V1.3.1 (2005-02) [1].

• The complex input signal is multiplied by a fixed gain and then by a complex Rayleigh fading gain.
These actions form the multipath portion of the signal path. K is the Rician fade factor in dB.

• The multipath portion is then added to the direct signal component to form the Rician fading
signal. This action forms the line-of-sight (LOS) component of the signal path.

The coherent summation of many multipath components yield a classical Doppler spectrum for
Rayleigh fading process, which when added to the direct path signal, forms the Rician fading
signal.

• Noise samples can be subsequently added to the sum of the LOS component and multipath
components.

Note The power of the complex output faded signal is (1+1/Kf), where Kf is the “KFactor” on page 4-
0 .

4 System Objects

4-32

References
[1] ETSI TS 101 376-5-5 V1.3.1 (2005-02). GEO-Mobile Radio Interface Specifications (Release 1);

Part 5: Radio interface physical layer specifications; Sub-part 5: Radio Transmission and
Reception; GMR-1 05.005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation is available only when the Visualization property is "Off".
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.AWGNChannel | comm.RayTracingChannel | comm.RayleighChannel |
comm.RicianChannel

Functions
doppler

Introduced in R2021a

 etsiRicianChannel

4-33

ccsdsTMWaveformGenerator

Generate CCSDS TM waveform

Description
The ccsdsTMWaveformGenerator System object generates a Consultative Committee for Space
Data Systems (CCSDS) Telemetry (TM) time-domain waveform. The object implements the waveform
generation aspects of CCSDS standard blue books:

• CCSDS 131.0-B-3 — TM synchronization and channel coding [1]
• CCSDS 401.0-B-30 — Radio frequency and modulation systems [2]
• CCSDS 131.2-B-1 — Flexible advanced coding and modulation scheme for high rate TM

applications [3]

Note The object supports waveform generation specified by the CCSDS TM synchronization and
channel coding standard [1] and CCSDS flexible advanced coding and modulation scheme for high
rate TM standard [3]. To obtain the waveform for either of the desired standard, set the
WaveformSource property.

To generate a CCSDS TM waveform:

1 Create the ccsdsTMWaveformGenerator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
tmWaveGen = ccsdsTMWaveformGenerator
tmWaveGen = ccsdsTMWaveformGenerator(Name,Value)

Description

tmWaveGen = ccsdsTMWaveformGenerator creates a default CCSDS TM waveform generator
System object.

tmWaveGen = ccsdsTMWaveformGenerator(Name,Value) sets “Properties” on page 4-35 using
one or more name-value pairs. For example,
ccsdsTMWaveformGenerator("WaveformSource","flexible advanced coding and
modulation","ACMFormat",20) specifies the CSSDS TM waveform source as flexible advanced
coding and modulation standard with ACM format as 20 for the generated waveform.

4 System Objects

4-34

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

General

WaveformSource — CCSDS TM waveform source
"synchronization and channel coding" (default) | "flexible advanced coding and
modulation"

CCSDS TM waveform source, specified as one of these values.

• "synchronization and channel coding" — Use this option to set the waveform to CCSDS
TM synchronization and channel coding, as specified in CCSDS 131.0-B-3 [1].

• "flexible advanced coding and modulation" — Use this option to set the waveform to
CCSDS flexible advanced coding and modulation for high rate TM applications, as specified in
CCSDS 131.2-B-1 [3].

Data Types: char | string

ACMFormat — ACM format
1 (default) | integer in the range [1, 27]

Adaptive coding and modulation (ACM) format, specified as an integer in the range [1, 27], as
specified in CCSDS 131.2-B-1 Section 5.2.4 Table 5-2 [3].

Tunable: Yes

Dependencies

To enable this property, set the WaveformSource property to "flexible advanced coding and
modulation".
Data Types: double | uint8

NumBytesInTransferFrame — Number of bytes in one transfer frame
223 (default) | integer in the range [1, 2048]

Number of bytes in one transfer frame, specified as an integer in the range [1, 2048].

Dependencies

To enable this property, one of these conditions should be satisfied:

• Set WaveformSource property to "synchronization and channel coding" and the
ChannelCoding property to "none", "convolutional", or "LDPC" on stream of sync marked
transfer frame (SMTF).

• Set WaveformSource property to "flexible advanced coding and modulation". In this
case, the minimum number of NumBytesInTransferFrame is 223.

 ccsdsTMWaveformGenerator

4-35

For other values of ChannelCoding, this NumBytesInTransferFrame property is calculated
internally based on other properties.
Data Types: double | uint16

HasRandomizer — Option for randomizing data
1 or true (default) | 0 or false

Option for randomizing the data, specified as a numeric or logical value of 1 (true) or 0 (false).
Set this value to 1 (true) to randomize the data present in the channel access data unit (CADU).

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding".

When you set the ChannelCoding property to "LDPC" and IsLDPCOnSMTF property to 1 (true),
this property is not applicable, and is set to 1 (true).
Data Types: double | logical

HasASM — Option for inserting ASM
1 or true (default) | 0 or false

Option for inserting attached sync marker (ASM), specified as a numeric or logical value of 1
(true) or 0 (false). Set this value to 1 (true) to indicate the data in CADU is attached with ASM.

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding".

When you set the ChannelCoding property to "LDPC" and IsLDPCOnSMTF property to 1 (true),
this property is not applicable, and is set to 1 (true).
Data Types: double | logical

PCMFormat — PCM format
"NRZ-L" (default) | "NRZ-M"

Pulse code modulation (PCM) format to select the PCM coding in the CCSDS TM waveform, specified
as one of these values.

• "NRZ-L" — NRZ-level
• "NRZ-M" — NRZ-mark

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the Modulation property to "BPSK", "QPSK", "8PSK", "OPSK", or "PCM/PSK/PM".
Data Types: char | string

Channel Coding

ChannelCoding — Forward error correction coding scheme
"RS" (default) | "none" | "convolutional" | "concatenated" | "turbo" | "LDPC"

4 System Objects

4-36

Forward error correction coding scheme, specified as one of these values.

• "none"
• "RS"
• "convolutional"
• "concatenated"
• "turbo"
• "LDPC"

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding".
Data Types: char | string

NumBitsInInformationBlock — Number of bits in turbo or LDPC message
7136 (default) | 1784 | 3568 | 8920 | 1024 | 4096 | 16384

Number of bits in the turbo or lower density parity check (LDPC) message, specified as one of these
values.

• 1784, 3568, 7136, or 8920 — Use one of these values when you set the ChannelCoding property
to "turbo".

• 1024, 4096, 16384, or 7136 — Use one of these values when you set the ChannelCoding
property to "LDPC".

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to either "turbo" or "LDPC".
Data Types: double | uint8

ConvolutionalCodeRate — Code rate of convolutional code
"1/2" (default) | "2/3" | "3/4" | "5/6" | "7/8"

Code rate of convolutional code, specified as a one of these values.

• "1/2"
• "2/3"
• "3/4"
• "5/6"
• "7/8"

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to either "convolutional" or "concatenated".

When you set the ChannelCoding property to "concatenated", the numeric value of the code rate
also depends on the constituent Reed-Solomon (RS) code. You can obtain the actual numeric value for
any code from the output field ActualCodeRate of the info object function.

 ccsdsTMWaveformGenerator

4-37

Data Types: char | string

CodeRate — Code rate of turbo or LDPC code
"1/2" (for turbo code) (default) | "7/8" (for LDPC code) (default) | "2/3" | "1/3" | "1/4" | "1/6" |
"4/5"

Code rate of turbo or LDPC code, specified as one of these values.

• "1/2", "1/3", "1/4", or "1/6" — Use one of these values when you set the ChannelCoding
property to "turbo".

• "1/2", "2/3", "4/5", or "7/8" — Use one of these values when you set the ChannelCoding
property to "LDPC".

Note When you set the ChannelCoding property to "LDPC" and the
NumBitsInInformationBlock property to 7136, the CodeRate must be "7/8".

For an LDPC code, setting CodeRate to 7/8 implies an actual code rate numeric value of 223/255.
You can obtain the actual numeric value for any code from the output field ActualCodeRate of the
info object function.

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to either "turbo" or "LDPC".
Data Types: char | string

RSMessageLength — Number of bytes in one RS message block
223 (default) | 239

Number of bytes in one RS message block, specified as 223 or 239.

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to "RS" or "concatenated".
Data Types: double | uint8

RSInterleavingDepth — Interleaving depth of RS code
1 (default) | 2 | 3 | 4 | 5 | 8

Interleaving depth of the RS code, specified as 1, 2, 3, 4, 5, or 8. The interleaving depth is the
number of RS codewords in one code block.

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to "RS" or "concatenated".
Data Types: double | uint8

IsRSMessageShortened — Option to shorten RS code
0 or false (default) | 1 or true

4 System Objects

4-38

Option to shorten the RS code, specified as a numeric or logical value of 0 (false) or 1 (true). Set
this value to 1 (true) to shorten the RS code.
Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to "RS" or "concatenated".
Data Types: double | logical

RSShortenedMessageLength — Number of bytes in RS shortened message block
223 (default) | integer in the range [1, RSMessageLength]

Number of bytes in the RS shortened message block, specified as an integer in the range [1,
RSMessageLength].
Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding", the ChannelCoding property to "RS" or "concatenated", and the
IsRSMessageShortened property to 1 (true).
Data Types: double | uint8

IsLDPCOnSMTF — Option for using LDPC on stream of SMTF
0 or false (default) | 1 or true

Option for using LDPC on the stream of a sync marked transfer frame (SMTF), specified as a numeric
or logical value of 0 (false) or 1 (true). Set this value to 1 (true) to indicate LDPC on the stream
of SMTF as specified in CCSDS 131.0-B-3 Section 8 of the TM synchronization and channel coding
standard [1]. To indicate LDPC on the transfer frame, set this value to 0 (false).
Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to "LDPC".
Data Types: double | logical

LDPCCodeBlockSize — Number of LDPC codewords in LDPC code block of stream of SMTF
1 (default) | integer in the range [1, 8]

Number of LDPC codewords in the LDPC code block of the stream of SMTF, specified as an integer in
the range [1, 8].
Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding", the ChannelCoding property to "LDPC", and the IsLDPCOnSMTF property to true.
Data Types: double | uint8

Digital Modulation and Filter

Modulation — Modulation scheme
"QPSK" (default) | "BPSK" | "8PSK" | "OQPSK" | "GMSK" | "PCM/PSK/PM" | "PCM/PM/biphase-L" |
"4D-8PSK-TCM"

Modulation scheme used in CCSDS TC waveform, specified as one of these values.

 ccsdsTMWaveformGenerator

4-39

• "QPSK"
• "BPSK"
• "8PSK"
• "OQPSK"
• "GMSK"
• "PCM/PSK/PM"
• "PCM/PM/biphase-L"
• "4D-8PSK-TCM"

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding".
Data Types: char | string

PulseShapingFilter — Pulse shaping filter
"root raised cosine" (default) | "none"

Pulse shaping filter, specified as "root raised cosine" or "none".
Dependencies

To enable this property, one of these conditions must be satisfied:

• Set WaveformSource property to "synchronization and channel coding" and the
Modulation property to "BPSK", "QPSK", "8PSK", or "4D-8PSK-TCM".

• Set WaveformSource property to"flexible advanced coding and modulation".

Data Types: char | string

RolloffFactor — Roll-off factor of SRRC baseband filter
0.35 (default) | scalar in the range [0, 1]

Roll-off factor of the square root raised cosine (SRRC) baseband filter, specified as a scalar in the
range [0, 1].

Note This property is not applicable when you set the PulseShapingFilter property to "none"
for either value of the WaveformSource property.

Dependencies

To enable this property, one of these conditions must be satisfied:

• Set WaveformSource property to "synchronization and channel coding" and the
Modulation property to either "BPSK", "QPSK", "8PSK", "OQPSK", or "4D-8PSK-TCM".

• Set WaveformSource property to "flexible advanced coding and modulation".

Data Types: double

FilterSpanInSymbols — Filter span in number of symbols
10 (default) | positive integer

4 System Objects

4-40

Filter span in number of symbols, specified as a positive integer.

The ccsdsTMWaveformGenerator System object truncates the infinite impulse response of the ideal
root raised cosine filter to this value.

Note This property is not applicable when you set the PulseShapingFilter property to "none"
for either value of the WaveformSource property.

Dependencies

To enable this property, one of these conditions must be satisfied:

• Set WaveformSource property to "synchronization and channel coding" and the
Modulation property to either "BPSK", "QPSK", "8PSK", "OQPSK", or "4D-8PSK-TCM".

• Set WaveformSource property to "flexible advanced coding and modulation".

Data Types: double | uint32

BandwidthTimeProduct — Bandwidth time product for GMSK modulator
0.25 (default) | 0.5

Bandwidth time product for the Gaussian minimum shift keying (GMSK) modulator, specified as 0.25
or 0.5.

Dependencies

To enable this property, set WaveformSource property to "synchronization and channel
coding" and the Modulation property to "GMSK".
Data Types: double

ModulationEfficiency — Modulation efficiency of 4D-8PSK-TCM
2 (default) | 2.25 | 2.5 | 2.75

Modulation efficiency of 4D-8PSK trellis coded modulator (TCM), specified as 2, 2.25, 2.5, or 2.75.
This property indicates the number of bits for each complex baseband symbol.

Dependencies

To enable this property, set WaveformSource property to "synchronization and channel
coding" and the Modulation property to "4D-8PSK-TCM".
Data Types: double

SubcarrierWaveform — Type of waveform to PSK-modulate NRZ data
"sine" (default) | "square"

Type of waveform to PSK-modulate the non-return-to-zero (NRZ) data, specified as "sine" or
"square".

Dependencies

To enable this property, set WaveformSource property to "synchronization and channel
coding" and the Modulation property to "PCM/PSK/PM".
Data Types: char | string

 ccsdsTMWaveformGenerator

4-41

ModulationIndex — Modulation index in residual carrier phase modulation
0.4 (default) | scalar in the range [0.2, 2]

Modulation index in the residual carrier phase modulation, specified as a scalar in the range [0.2, 2].
Units are in radians.
Dependencies

To enable this property, set WaveformSource property to "synchronization and channel
coding" and the Modulation property to "PCM/PSK/PM" or "PCM/PM/biphase-L".
Data Types: double

SymbolRate — Coded symbol rate
2000 (default) | positive scalar

Coded symbol rate in Hz, specified as a positive scalar.
Dependencies

To enable this property, set WaveformSource property to "synchronization and channel
coding" and the Modulation property to "PCM/PSK/PM".
Data Types: double

SubcarrierToSymbolRateRatio — Ratio of subcarrier frequency to symbol rate
4 (default) | integer in the range [1, 50]

Ratio of the subcarrier frequency to the symbol rate, specified as an integer in the range [1, 50].
Dependencies

To enable this property, set WaveformSource property to "synchronization and channel
coding" and the Modulation property to "PCM/PSK/PM".
Data Types: double | uint8

SamplesPerSymbol — Number of samples per symbol
10 (default) | positive integer

Number of samples per symbol, specified as a positive integer.

This property is applicable for either input value of the WaveformSource property.
Dependencies

To enable this property, one of these conditions must be satisfied:

• Set the Modulation property to "OQPSK", "PCM/PSK/PM", or "GMSK".
• Set the PulseShapingFilter to "root raised cosine".

Data Types: double | uint8

HasPilots — Option for inserting pilot symbols
0 or false (default) | 1 or true

Option for inserting pilot symbols within data, specified as a numeric or logical value of 0 (false)
or 1 (true). Set this value to 1 (true) to indicate pilots are inserted, as described in CCSDS flexible
advanced coding and modulation scheme for high rate TM standard [3].

4 System Objects

4-42

Dependencies

To enable this property, set the WaveformSource property to "flexible advanced coding and
modulation".
Data Types: double | logical

ScramblingCodeNumber — Scrambling code number
0 (default) | integer in the range [0, (218 – 2)]

Scrambling code number for flexible advanced coding and modulation for high rate TM applications
standard [3], specified as an integer in the range [0, (218 – 2)].

ScramblingCodeNumber is used to randomize the complex baseband symbols.

Dependencies

To enable this property, set the WaveformSource property to "flexible advanced coding and
modulation".
Data Types: double | uint32

Read-Only

NumInputBits — Minimum number of bits required to generate waveform
integer

This property is read-only.

Minimum number of input bits to generate a waveform, returned as an integer.

The number of input bits must be an integer multiple of NumInputBits.
Data Types: double

MinNumTransferFrames — Minimum number of transfer frames for nonempty output
integer

This property is read-only.

Minimum number of transfer frames for a nonempty System object output, specified as an integer.

When you set the WaveformSource property to "flexible advanced coding and
modulation", or to "synchronization and channel coding" with the IsLDPCOnSMTF
property set to 1 (true), System object output is empty until it has sufficient input to process through
channel coding and modulation.
Data Types: double

Usage

Syntax
txWaveform = tmWaveGen(bits)
[txWaveform,encodedBits] = tmWaveGen(bits)

 ccsdsTMWaveformGenerator

4-43

Description

txWaveform = tmWaveGen(bits) generates a CCSDS TM time-domain waveform for the
corresponding input bits.

[txWaveform,encodedBits] = tmWaveGen(bits) also returns the bits obtained after TM
synchronization and channel coding sublayer operations.

Input Arguments

bits — Information bits
binary-valued column vector

Information bits, in the form of transfer frames, specified as a binary-valued column vector. The
length of this vector must be an integer multiple of the number of bits in one transfer frame. The
NumInputBits property indicates the number of bits in one transfer frame.
Data Types: double | int8 | logical

Output Arguments

txWaveform — Generated CCSDS TM time-domain waveform
column vector

Generated CCSDS TM time-domain waveform, returned as a column vector. This output is generated
in the form of complex in-phase quadrature (IQ) samples.
Data Types: double

encodedBits — Output bits obtained after TM synchronization and channel coding sublayer
operations
binary-valued column vector

Output bits obtained after TM synchronization and channel coding sublayer operations, returned as a
binary-valued column vector.
Data Types: double | int8 | logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to ccsdsTMWaveformGenerator
info Characteristic information about object
flushFilter Flush transmit filter

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
clone Create duplicate System object

4 System Objects

4-44

isLocked Determine if System object is in use
reset Reset internal states of System object

Examples

Generate CCSDS TM Waveform for Synchronization and Channel Coding Scheme

Generate a Consultative Committee for Space Data Systems (CCSDS) Telemetry (TM) waveform for
the synchronization and channel coding standard, for multiple transfer frames. Visualize the
waveform by using a spectrum plot.

Create a CCSDS TM System object. Set the waveform type as synchronization and channel
coding with GMSK-modulated concatenated codes.

tmWaveGen = ccsdsTMWaveformGenerator;
tmWaveGen.WaveformSource = "synchronization and channel coding";
tmWaveGen.ChannelCoding = "concatenated";
tmWaveGen.Modulation = "GMSK";
tmWaveGen.RSMessageLength = 239;
tmWaveGen.RSInterleavingDepth = 2;
tmWaveGen.BandwidthTimeProduct = 0.5;
disp(tmWaveGen)

 ccsdsTMWaveformGenerator with properties:

 WaveformSource: "synchronization and channel coding"
 HasRandomizer: true
 HasASM: true

 Channel coding properties:
 ChannelCoding: "concatenated"
 ConvolutionalCodeRate: "1/2"
 RSMessageLength: 239
 RSInterleavingDepth: 2
 IsRSMessageShortened: false

 Digital modulation and filter properties:
 Modulation: "GMSK"
 BandwidthTimeProduct: 0.5000
 SamplesPerSymbol: 10

 Use get to show all properties

Specify the number of transfer frames.

numTF = 15;
waveform = []; % Initialize waveform as null

Generate the CCSDS TM waveform for the synchronization and channel coding standard by using
multiple System object calls.

rng default % For reproducible results
for iTF = 1:numTF
 bits = randi([0 1],tmWaveGen.NumInputBits,1);
 waveform = [waveform; tmWaveGen(bits)];
end

 ccsdsTMWaveformGenerator

4-45

Create a dsp.SpectrumAnalyzer System object to display the frequency spectrum of the generated
CCSDS TM time-domain waveform.

BW = 36e6; % Typical satellite channel bandwidth
Fsamp = tmWaveGen.SamplesPerSymbol*BW;
scope = dsp.SpectrumAnalyzer('SampleRate',Fsamp,...
 'AveragingMethod','Exponential');
scope(waveform)

Generate CCSDS TM Waveform for Flexible Advanced Coding and Modulation Scheme

Generate a Consultative Committee for Space Data Systems (CCSDS) Telemetry (TM) waveform for
the flexible advanced coding and modulation scheme for high rate TM applications standard, for one
physical layer (PL) frame. Visualize the waveform by using a scatter plot.

Create a CCSDS TM System object, and then specify its properties.

tmWaveGen = ccsdsTMWaveformGenerator;
tmWaveGen.WaveformSource = "flexible advanced coding and modulation";
tmWaveGen.ACMFormat = 17; % 16QPSK
tmWaveGen.PulseShapingFilter = "none";
disp(tmWaveGen)

4 System Objects

4-46

https://www.mathworks.com/help/dsp/ref/dsp.spectrumanalyzer-system-object.html

 ccsdsTMWaveformGenerator with properties:

 WaveformSource: "flexible advanced coding and modulation"
 ACMFormat: 17
 NumBytesInTransferFrame: 223

 Digital modulation and filter properties:
 PulseShapingFilter: "none"
 HasPilots: false
 ScramblingCodeNumber: 0

 Use get to show all properties

Calculate the number of transfer frames in one PL frame.

NumTFInOnePL = tmWaveGen.MinNumTransferFrames*16; % One PL frame consists of 16 codewords, as specified in the standard
waveform = []; % Initialize waveform as null

Generate the CCSDS TM waveform for the flexible advanced coding and modulation scheme for high
rate TM applications standard.

rng default % For reproducible results
for iTF = 1:NumTFInOnePL
 bits = randi([0 1],tmWaveGen.NumInputBits,1);
 waveform = [waveform; tmWaveGen(bits)];
end

Display the scatter plot of the constellation for the generated waveform.

scatterplot(waveform);
legend off;

 ccsdsTMWaveformGenerator

4-47

Get CCSDS TM Waveform Generator Information and Check Transmit Filter Delay

Get information from a ccsdsTMWaveformGenerator System object by using the info function.
Then retrieve the filter residual samples by using the flushFilter object function.

Create a Consultative Committee for Space Data Systems (CCSDS) Telemetry (TM) System object.
Set the waveform type as synchronization and channel coding with low-density parity-check
(LDPC) channel coding. Display the properties.

tmWaveGen = ccsdsTMWaveformGenerator;
tmWaveGen.WaveformSource = "synchronization and channel coding";
tmWaveGen.ChannelCoding = "LDPC";
tmWaveGen.NumBitsInInformationBlock = 1024;
tmWaveGen.Modulation = "QPSK";
tmWaveGen.CodeRate = "1/2";
disp(tmWaveGen)

 ccsdsTMWaveformGenerator with properties:

 WaveformSource: "synchronization and channel coding"
 HasRandomizer: true
 HasASM: true
 PCMFormat: "NRZ-L"

 Channel coding properties:

4 System Objects

4-48

 ChannelCoding: "LDPC"
 NumBitsInInformationBlock: 1024
 CodeRate: "1/2"
 IsLDPCOnSMTF: false

 Digital modulation and filter properties:
 Modulation: "QPSK"
 PulseShapingFilter: "root raised cosine"
 RolloffFactor: 0.3500
 FilterSpanInSymbols: 10
 SamplesPerSymbol: 10

 Use get to show all properties

Specify the number of transfer frames.

numTF = 20;

Get the characteristic information about the CCSDS TM waveform generator.

info(tmWaveGen)

ans = struct with fields:
 ActualCodeRate: 0.5000
 NumBitsPerSymbol: 2
 SubcarrierFrequency: []

Generate the input bits for the CCSDS TM waveform generator, and then generate the waveform.

bits = randi([0 1], tmWaveGen.NumInputBits*numTF,1);
waveform = tmWaveGen(bits);

Check the filter residual data samples that remain in the filter delay.

flushFilter(tmWaveGen)

ans = 100×1 complex

 -0.0772 - 0.0867i
 -0.0751 - 0.0859i
 -0.0673 - 0.0788i
 -0.0549 - 0.0654i
 -0.0388 - 0.0469i
 -0.0200 - 0.0250i
 0.0002 - 0.0012i
 0.0208 + 0.0227i
 0.0405 + 0.0453i
 0.0587 + 0.0653i
 ⋮

References
[1] CCSDS 131.0-B-3. Blue Book. Issue 3. "TM Synchronization and Channel Coding."

Recommendation for Space Data System Standards. Washington, D.C.: CCSDS, September
2017.

 ccsdsTMWaveformGenerator

4-49

[2] CCSDS 401.0-B-30. Blue Book. Issue 30. "Radio Frequency and Modulation Systems - Part 1:
Earth Stations and Spacecraft." Recommendation for Space Data System Standards.
Washington, D.C.: CCSDS, February 2020.

[3] CCSDS 131.2-B-1. Blue Book. Issue 1. "Flexible Advanced Coding and Modulation Scheme for
High Rate Telemetry Applications." Recommendation for Space Data System Standards.
Washington, D.C.: CCSDS, March 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ccsdsTCIdealReceiver | ccsdsTCWaveform

Objects
ccsdsTCConfig

Introduced in R2021a

4 System Objects

4-50

	Apps
	Satellite Link Budget Analyzer

	Functions
	ccsdsRSEncode
	ccsdsRSDecode
	dvbs2BitRecover
	p618PropagationLosses
	p618SiteDiversityOutage
	ccsdsTCWaveform
	ccsdsTCIdealReceiver
	info
	flushFilter
	satellite
	conicalSensor
	satelliteScenarioViewer
	play
	pointAt
	camroll
	campitch
	campos
	camheading
	camheight
	camtarget
	hideAll
	showAll
	accessPercentage
	linkPercentage
	linkStatus
	linkIntervals
	aer
	accessIntervals
	orbitalElements
	accessStatus
	states
	gimbalAngles
	show
	hide
	ebno
	access
	groundStation
	transmitter
	receiver
	gimbal
	fieldOfView
	link
	gaussianAntenna
	groundTrack

	Objects
	ccsdsTCConfig
	p618SiteDiversityConfig
	p618Config
	satelliteScenario
	skyplot
	SkyPlotChart
	Satellite
	GroundStation
	Access
	ConicalSensor
	Transmitter
	Receiver
	Gimbal
	FieldOfView
	Link
	GroundTrack

	System Objects
	dvbs2WaveformGenerator
	dvbs2xWaveformGenerator
	etsiRicianChannel
	ccsdsTMWaveformGenerator

